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ABSTRACT

Gerrodette and DeMaster (1990) conclude that dynamic response analysis indicates that the gray whale population passed through its
maximum net productivity level (MNPL, approximately equivalent to MSY level) between 1967 and 1980. Their conclusion is examined
using models for population trends which permit a point of inflection; these are fitted globally to the time series of census estimates
available up to 1987-88. A cubic and a logistic model are used. The cubic model results indicate with almost 100% confidence that the
population passed through MNPL within two years of 1973-74. However, both this conclusion and that of Gerrodette and DeMaster are
considered to be unreliable. This is because the curves fitted by both analyses correspond to markedly decreasing population sizes over parts
of the periods to which they apply. This is inconsistent with plausible population dynamics behaviour, which is itself an underlying
pre-requisite for dynamic response analysis methodology. A suggestion is made as to how applications of dynamic response analysis
methodology such as that of Boveng et al. (1988) could be adapted to ensure the necessary respect of such constraints. Results of a
parametric bootstrap procedure for confidence interval estimation applied to the logistic model indicate that the probability that the
population passed through MNPL during the period of the censuses is not large. The census data are scarcely adequate to allow for reliable
estimates of the curvature of the population trajectory to be made. The logistic model dynamic response analysis indicates that there is a
somewhat greater likelihood that the gray whale population was below rather than above its MNPL in 1990, given the data available at the
time.
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INTRODUCTION

Dynamic response analysis (Boveng et al., 1988; Gerrodette,
1988; Goodman, 1988) is an appealingly simple approach
for determining whether a population is above or below its
maximum net productivity level (MNPL). This is
particularly so in the case of the eastern North Pacific gray
whale population. The alternative method of making this
determination - fitting simple population models using
historic catch data - leads to inconsistencies (e.g. Cooke,
1986; Lankester and Beddington, 1986). In addition, the
application of such population models requires some
restrictive assumptions, such as time-invariance of carrying
capacity (whose violation may perhaps be the reason for the
inconsistencies that arise in the simple model fits for the gray
whale population - Butterworth et al., 2002). Dynamic
response analysis has the advantage that such an assumption
is not necessary.

Gerrodette and DeMaster (1990) point out that MNPL is
not the same as MSY level (MSYL), which is a function of
the sex and age-composition of the harvest. However, the
difference in the case of the eastern North Pacific gray whale
population is not likely to be large. The question of whether
this population is above or below its MSYL has been of
particular relevance in IWC Scientific Committee debates
about the likely values of MSY rate (MSYR) for baleen
whales. If this population is now above MSYL, then the
increase rate of 3.2% per annum (IWC, 1993) evident from
preceding censuses (see Table 1b), coupled with the size of
the catch over that period (see Table 2), provides an
estimated lower bound of some 4% for MSYR (expressed in
terms of total population); however, if the population is still
below MSYL, no such bound can be inferred.

Gerrodette and DeMaster (1990) present results of an
application of dynamic response analysis to the eastern
North Pacific gray whale population. The particular
methodology they use is that of Boveng et al. (1988), which
involves plotting a time series of the second-order
coefficients of quadratics (i.e. local curvature estimates)
fitted to sequences of censuses of lengths from 6-11 years.
They apply this method to the annual census data from
1967-68 to 1979-80 reported in Reilly et al. (1983), shown in
Table 1a. They go on to report that the pattern of these
coefficients (although few of them are individually
significantly different from zero) is indicative of a
population that was below MNPL in 1967, but above MNPL
by 1980.

Our particular concern is to apply dynamic response
analysis to these data in a manner that allows for an easier
evaluation of the statistical confidence that can be placed in
the Gerrodette-DeMaster conclusion. To this end functions
have been fitted which permit a point of inflection to the
complete time series of censuses, instead of estimating
successive local curvature values and seeing whether these
pass through zero. Goodman (1988) mentions this approach,
which he terms ‘global fitting’, but raises two associated
problems. First, the range of the data may be inadequate for
secure estimation of all the parameters of this global function
- for this reason, the parameterisations used in this paper are
kept as parsimonious as possible. Secondly, he cautions
about possible lack of fit (model mis-specification), with
attendant distortion of parameter estimates and their
implications. The average of the standard deviations (SDs)
of the 13 census estimates in Reilly et al. (1983) is 1,586 (see
Table 1a); this compares with an estimated residual SD of
1,536 for an (unweighted) linear regression fitted to these
data. If these data contained precise information on complex
details of shape, the latter SD would be much higher than the1 A version of this paper was originally presented in 1990.
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former; their near equality suggests that model
mis-specification is unlikely to be a problem for the analyses
of these data that follow.

This paper considers global fits of cubic and logistic
functions to the time series of gray whale census estimates
up to 1987-88. Confidence intervals (CIs) relating to the year
in which the population trajectory shows a point of inflection
(y*, corresponding to MNPL) are determined by linear model
and (Monte Carlo) parametric bootstrap methods
respectively for these two functions. The results are used to
assess the statistical confidence which can be placed in the
Gerrodette-DeMaster conclusion that dynamic response
analysis indicates that the population passed through MNPL
between 1967 and 1980.

DATA AND METHODOLOGY

The gray whale census estimates used in the analyses that
follow are given in Table 1. Table 1a lists the estimates
reported in Reilly et al. (1983) for the period 1967-68 to
1979-80. These are the data that were used by Gerrodette and
DeMaster (1990) in their application of dynamic response
analysis. It is therefore appropriate to use this same set for
the alternative analyses which follow to re-examine their
conclusion. Censuses have been conducted subsequent to
1979-80, and the data from these and the earlier years have

been re-analysed by Buckland and Breiwick (2002). Table
1b lists Buckland and Breiwick’s ‘adjusted abundance’
estimates for the period 1967-68 to 1987-88; applications of
the global fitting methods of this paper to this longer period
have all used this more recent dataset.

Note that the standard error (SE) estimates in Table 1b
differ slightly from those given in Buckland and Breiwick
(2002). This is because the latter error estimates include a
common contribution reflecting the variance of the
multiplicative factor used by Buckland and Breiwick to
convert ‘relative abundance’ to ‘adjusted abundance’
estimates. This variance contribution has not been included
in the error estimates reported here. The reason is that (as
discussed below) the analysis methods to be used in this
paper are concerned only with population trajectory shape,
not scale, so that the variance of the multiplicative factor is
not relevant to the analyses which utilise the SE
information.

The gray whale catches during the period of the censuses
are listed in Table 2. These data were provided by C. Allison
(IWC) and contain some very minor amendments to those
reported in Lankester and Beddington (1986).

Strictly, dynamic response analysis involves
determination of the population size corresponding to
maximum production. This will not in general correspond to
the size at which the population trajectory shows a point of
inflection, because the annual harvest, as well as the change
in population size, has to be taken into account in assessing
production; equivalence occurs only if the annual harvest is
constant. The annual gray whale catch over the 1967-88
period has been remarkably steady (mean 176; SD only 23).
The greatest deviations of the catch from this mean are +74
and –40, which are insubstantial in the context of the SEs of
the population estimates in Table 1. The analyses of this
paper have thus ignored the effects of variations in the
annual harvest, thereby reducing the problem to one of
estimating the year in which the gray whale population
trajectory shows a point of inflection. An advantage of this
approach is that it requires only that the population censuses
reflect relative (and comparable) indices of population size,
rather than unbiased estimates of absolute abundance.

The simplest polynomial function which can show a point
of inflection in the trend of relative abundance (N) with
time/year (y) is the cubic:

(1)

for which this inflection occurs at time:

(2)

The particular advantage of fitting such a trend model to the
census estimates is that it is linear in its parameters. The
assumptions of independence and error distribution
normality then allow standard linear model theory to be used
to provide parameter estimates and the associated SEs. This
applies both to the case when all the censuses considered are
given equal weight in the fitting process and when each
census is weighted by the inverse of the square of its
estimated SE. The SE estimate for y* is of particular interest
and is a non-linear function of the model parameters.
Nevertheless, this error estimate can be readily calculated
using the delta method approximation, applied using the
parameter variance and covariance estimates provided by
standard packages which perform linear model fits.

A disadvantage of the cubic of equation (1) is that four
parameters need to be estimated, with a consequent possible
loss of estimation precision. A more parsimonious approach
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(with one less parameter) was therefore attempted by fitting
the logistic model to the census time series. To avoid
problems with statistically unstable parameter estimates,
Schnute’s (1981) parameterisation of the logistic curve was
used for this purpose:

(3)

i.e. four parameters a, b, N1 = N̂ (y = y1) and N2 = N̂ (y = y2),
where in the special case of the logistic curve the following
relations apply:

It then follows that:

(4)

where:

The calculations were carried out for y1 = 1967-68 and y2
equal to the time of the last census considered.

The choice of a logistic curve for fitting purposes is not
intended to imply that the dynamics of the gray whale are
governed by the associated differential equation. Rather, this
curve was chosen because it is one of the simplest forms
which possesses the desired general properties for the trend
in abundance: plausible past and future limiting behaviour,
and a point of inflection.

There is a cost in changing from the cubic to the logistic
model, however. This is that the logistic model is no longer
linear in its parameters, so that non-linear estimation
techniques are required. A more serious problem is how to
estimate an SE (or CI) for y*. This could be obtained from
elements of the information matrix, together with an
application of the delta method. However, the non-linear
nature of the problem means that the resultant CI estimates
would be approximate; further, the parameter estimates for
such a model fitted to relatively few data often have
markedly skewed distributions, so that unless such estimates
are precise, the linear approximation of the delta method is
unlikely to be accurate. The likelihood ratio approach could
be applied in a manner which bypasses the need for the delta
method, but the resultant CI estimates would remain
approximate because of the non-linearity of the model.

A bootstrap approach was, therefore, adopted to
determine the precision of the logistic model y* estimate.
[Note: Strictly speaking, Monte Carlo implementations of
forms of what is termed a ‘conditional parametric bootstrap’
procedure were applied (Smith et al., 1993, Table 1) - for
convenience, the term ‘bootstrap’ is used without these
qualifications in what follows.] For the case where each
census estimate was given an equal weight in the fit, the
bootstrap replicate datasets were generated from the fitted
logistic curve (N̂y). Thus, for fits to the 1967-68 to 1979-80
census estimates of Table 1a for example, a re-sampled set
{Ny

S : y = 67-68,...,79-80} where S = 1,...,Smax was formed
as follows:

(5)

where:
Ny is the census estimate for year y;
N̂y is the fitted logistic curve value for year y; and
n = 13 for this example.
Note that the (n-3) term in the denominator of the equation
for s2 is an ad hoc attempt to adjust for bias in the
maximum-likelihood estimate of s2, by making allowance
for the fact that three parameters are being estimated in the
fit. This adjustment would be exact if the model being used
was linear in its parameters.

For fits where the census estimates are each weighted by
the inverse of their squared SEs, the bootstrap samples were
generated directly from the data without reference to the fit
itself:

(6)

where sy is the estimate of the SE for census estimate Ny.
The basis for this approach is discussed further in Appendix
1.

In either case, each time series of bootstrap censuses
{Ny

S} is fitted by the logistic model with the same weighting
scheme as used for the associated original fit and each
bootstrap fit provides a value for the year in which the curve
shows a point of inflection (yS)*. The set {(yS)*:
S = 1,...,Smax} then constitutes an empirical distribution for
the estimate of y*; CI estimates follow straightforwardly
after ordering this set. For the computations reported in this
paper, Smax = 500.

There is a philosophical difference between the two
bootstrap approaches used. Equation (5), for equal
weighting, tacitly assumes that the underlying population
trajectory is logistic. The approach of equation (6) makes no
assumption about the form of this trajectory, but generates
equally likely possible time series of censuses by treating
each observation as independent; in this context, the logistic
curve eventually fitted is regarded only as a convenient
functional form with the desired general properties (as
detailed above). An advantage of the latter approach is that
it avoids the need to make ad hoc adjustments for bias when
generating the bootstrap residuals.

RESULTS
The estimates of y* from fitting the cubic model of equation
(1) to the census estimates from 1967-68 to 1979-80 and the
associated delta method estimates of SE are:
Unweighted: y* = 1973-74 + 0.4 yrs SE = 0.9
Weighted: y* = 1973-74 + 0.0 yrs SE = 0.5
The fit to the data for the latter case (weighting by 1/SE2) is
shown in Fig. 1. Gerrodette and DeMaster (1990) used an
unweighted fitting procedure for the same data that have
been used here (DeMaster, pers. comm.). Although, for
reasons discussed in the following section, the weighted
procedure is preferred here, the results are relatively
insensitive to whichever procedure is chosen.

The results for fitting the logistic model of equation (3) are
given in Table 3. They are given for fits to both Reilly et al.’s
(1983) estimates for 1967-68 to 1979-80, and Buckland and
Breiwick’s (2002) estimates for 1967-68 to 1987-88. The
weighted fits to these two series are shown in Figs 2 and 3
respectively.

A fit of the full four-parameter Schnute growth curve
model (i.e. parameters a and b unconstrained) was carried
out for both the unweighted and weighted cases, and
compared to the special (three-parameter) case of the logistic
model for both datasets. In all cases, a likelihood ratio test
indicated that there was no statistical justification for the
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inclusion of a fourth parameter. This demonstrates that there
is no evidence that the choice of the logistic form for fitting
purposes is introducing any model mis-specification.

DISCUSSION
At face value, the two approaches applied here to Reilly et
al.’s (1983) census estimates have given startlingly different
results. The cubic model suggests, with close to ‘100%

confidence’, that these estimates indicate a point of
inflection in the population trajectory within two years of
1973-74. This is entirely compatible with the results shown
in fig. 2 of Gerrodette and DeMaster (1990). In contrast, the
corresponding results for the logistic model shown in Table 3
indicate a probability of less than 10% that the point of
inflection occurs within the period of these first 13
censuses.

Fig. 1. The weighted cubic model fit to census estimates of Reilly et al. (1983) (Table 1a) from 1967-68 to 1979-80
is shown by the dashed line. The dots and associated vertical bars correspond to the actual census estimates and
associated 95% CIs (taken to be ± 2 SEs).

Fig. 2. As for Fig. 1, except that the dashed line corresponds to the weighted logistic model fit.
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The method of analysis used for assessing the precision of
y* for the cubic model could be questioned because it does
not exclude the possibility that the point of inflection arises
from a convex (viewed from above) followed by a concave
curve, which would be unrealistic in a population dynamics
context. However, this is a minor concern, and in any case
the resolution of the apparently contradictory results from
the two models is immediately evident from inspection of
Fig. 1.

The rationale underlying dynamic response analysis
implicitly assumes that under a constant or zero harvest, the
population trajectory will be monotonically increasing. This
is not the case for the fitted cubic in Fig. 1, which decreases
for the period of both the first three and the last three
censuses shown. This is a consequence of the decreases in
the actual point estimates from the 1967-68 to 1971-72
(1969-70 excepted) and 1976-77 to 1978-79 censuses. The
sizes of the CIs for the census estimates shown in Fig. 1
indicate that these drops are almost certainly stochastic
fluctuations; however, the cubic model is using its available
degrees of freedom to reflect these drops in the fit which it
chooses. Thus, the high precision of the cubic model’s
estimate of y* is misleading, because it is a consequence of
the model allowing unrealistic population behaviour over the
early and late parts of the period considered.

For this reason, the cubic model’s assessment of y* and its
precision is rejected here. For exactly the same reason, the
method of analysis used by Gerrodette and DeMaster (1990),
which indicated that the gray whale population passed
through MNPL between 1967 and 1980, is considered
unreliable2. The drops in the census estimates between
1967-68 and 1971-72, and between 1976-77 and 1978-79,
have the effect of enhancing the second order coefficients in
the quadratics fitted to periods including those years, thus
apparently strengthening the case for detection of a point of
inflection. But the fact that the quadratics fitted over the
periods indicated correspond to estimating that population
size has decreased for at least parts of those periods also
needs to be taken into account. Such population behaviour is
inconsistent with the underlying rationale for dynamic
response analysis. Future attempts to use the methodology of
Boveng et al. (1988) when implementing dynamic response
analysis should take care to constrain the parameters of the
quadratics fitted to exclude such apparent behaviour. This
might be achieved by fitting the logistic model (rather than a
quadratic) over short time periods, and then using such fits to
estimate the sign and magnitude of the curvature at the
mid-point of each corresponding period. Unfortunately, of
course, this approach (like any others incorporating the
constraints indicated) results in the loss of the convenience
and the power of a linear model analysis.

Application of the logistic model results in probabilities
ranging from 0% to 31% that the gray whale population
passed through MNPL for the two periods and
corresponding sets of census estimates considered (Table 3).
Naturally, the confidence with which conclusions can be
drawn from such estimates depends on the reliability of the
bootstrap methods used to provide distributions for y*.
Originally it had been our intention to test the procedures of
equations (5) and (6) for possible bias, using simulation
methods. However, the results in Table 3 are so far removed
from 95% confidence that MNPL falls within the census

2 Our assessment of unreliability concerns their methodology when
applied to this particular case; it will not necessarily hold in general.

Fig. 3. As for Fig. 2 (weighted logistic model fit), except that the fit is now to the census estimates of
Buckland and Breiwick (2002) (see Table 1b) for the period 1967-68 to 1987-88.
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period considered, that the bias in the bootstrap estimators of
variance of y* would have to be enormous to reverse these
results. This seems such an unlikely possibility that the
considerable amount of computer time needed for simulation
testing of these estimators for this particular dataset was not
felt to be justified.

The poor discriminatory power of dynamic response
analysis for the gray whale population which is indicated by
the logistic model analysis above is not altogether surprising
when the simulation results of Gerrodette (1988) are
considered. For example, fig. 3 of Gerrodette (1988) shows
the discriminatory power of fitting a quadratic to ten
successive population estimates (each with CV = 0.05)
generated from an underlying logistic model. Results are
shown for different values (ranging from 0.10-0.20) of the
intrinsic growth rate parameter r of the logistic model. The
sign of the second order coefficient of the quadratic is used
to assess whether the population is above or below MNPL.
This figure shows that the discriminatory power decreases as
the value of r drops, and for r = 0.10 the procedure is
effectively powerless (almost equally likely to give the
incorrect as the correct result) for population sizes greater
than 0.4K. In comparison, for Reilly et al.’s (1983) gray
whale data, the effective r ≈ 0.05 and the census estimates
have CVs~ 0.11, indicating a decrease in discriminatory
power on both counts compared to that shown in
Gerrodette’s example. Admittedly, three more population
estimates are available than the ten which Gerrodette
considers in the figure referenced, but these can scarcely
compensate for the other negative influences on
discriminatory power.

The authors consider the weighted fitting procedure
should be preferred to the unweighted one for the
applications to Reilly et al.’s (1983) census estimates for
1967-68 to 1979-80. This is because the SEs of the
individual census estimates (Table 1a) have very similar
magnitudes to those of the residuals in the model fits to the
data (note the comparison for a straight line fit discussed
earlier in the paper). This suggests that ‘observation errors’
(in the population-model-fitting sense of this term) totally
dominate any errors associated with model
mis-specification, so that inverse variance weighting would
seem to be the statistically preferable procedure for these
data. Accordingly the weighted results were chosen for
presentation in Figs 1-2.

For consistency, the weighted result is also the one plotted
in Fig. 3, which shows the fit to Buckland and Breiwick’s
(2002) estimates for 1967-68 to 1987-88. Comparison of the
error bars in Figs 2 and 3 indicates that the SE estimates in
Buckland and Breiwick’s case are certainly not capturing all
the variability about the underlying trend (i.e. in terms of the
symbols used in Appendix 1 s̃2 < s2). In these
circumstances, the weighted procedure will give negatively
biased estimates of variance, so that the unweighted results
would seem to be the more reliable for these data.

All the results give point estimates of y* and probability
levels which indicate a greater likelihood that the gray whale
population is currently below rather than above its MNPL
(see Table 3). This is more so when the latest three censuses
and Buckland and Breiwick’s reanalysis are taken into
account, although for the reasons explained in the previous
paragraph, it is considered that the weighted fit results
indicate greater precision than is really the case for the data
of Table 1b. The overall impression is therefore that the
reliability with which population trajectory curvature can be
estimated from the data available, allows a conclusion stated
no more strongly than that there is a somewhat greater

likelihood that the gray whale population was below rather
than above its MNPL (MSYL) in 1990, given the data
available at that time.

CONCLUSIONS

Conclusions from the cubic model analysis of this paper, and
from the analysis by Gerrodette and DeMaster (1990), that
the gray whale population passed through MNPL
(~MSYL) between 1967 and 1980 are unreliable. This is
because the curves fitted by both analyses correspond to
markedly decreasing population sizes over parts of the
periods to which they apply; this is inconsistent with
plausible population dynamics behaviour, which underlies
the rationale for dynamic response analysis. Care should be
taken to implement dynamic response analysis in a manner
that respects such plausibility constraints. 

The census data available up to 1987-88 are scarcely
adequate to allow for reliable estimates of population
trajectory curvature to be made. Fits using the logistic model
indicate a somewhat greater likelihood that the gray whale
population was below rather than above its MNPL in
1990.
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Appendix 1

A BASIS FOR THE PARAMETRIC BOOTSTRAP APPROACH OF EQUATION (6)

At first sight, it might appear that the approach of equation
(6) would provide positively biased estimates of variance,
because it would seem that bootstrap noise is being added to,
rather than replacing the real noise about the underlying
trend.

To show that this is not the case, the equivalence of the
approaches of equations (5) and (6) is demonstrated for the
simple case of estimating the standard error of the mean from
a sample drawn from a normal distribution, i.e.:

Data: {yi : i = 1,...,n} where yi from N(m,s2)

Estimator: (A.1)

The requisite variance is known for this case:

var(m) = s2/n (A.2)

and would be estimated by:

vâr(m) = ŝ2 /n (A.3)

The parametric bootstrap approach of equation (5)
A large number (Smax) of datasets {yi

S: i = 1,...,n} is
generated, where:

yi
S = m̂ + ñi

S

ñi
S is from N(0,ŝ2)

S = 1,....,Smax

The estimate from the Sth bootstrap dataset is:

(A.4)

and the average of these estimates is:

(A.5)

Thus, for large Smax, the bootstrap method of equation (5)
provides an estimate:

(A.6)

which is the required result (see equation A.3).

The parametric bootstrap approach of equation (6)
In this instance, the datasets generated are {yi

S : i = 1,...,n}
where:

ỹS
i = yi + hi

S

hi
S is from N(0,s̃2)

S = 1,....,Smax

The estimate from the Sth bootstrap dataset is:

(A.7)

Equation (A.7) has exactly the same form as equation (A.4),
because the contributions from the real noise: 

cancel, so that under the same arguments as used above:
vâreq(6) (m) ~ s̃2 /n (A.8)

Thus, if s̃2 (corresponding to the variance estimate
associated with each data point) is equivalent to s2

(measuring the variance about the underlying trend - a
constant in this illustration), the bootstrap approaches of
equations (5) and (6) are identical for this case. A similar
exercise demonstrates that they are also identical for the case
of linear regression.
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