# 2003 Updated Assessment for the *Merluccius paradoxus* Hake resource off the South and West Coasts

R. A. Rademeyer and D.S. Butterworth MARAM, Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa

October 2003

## Introduction

This document presents an updated assessment of the *M. paradoxus* hake resource off the south and west coasts of South Africa. The previous assessment of this resource is described in Rademeyer and Butterworth (2002).

## Data

The total annual catches of *M. paradoxus* assumed for this analysis are shown in Table 1 for the south and west coasts separately. Rademeyer and Butterworth (2002) provide details of the assumptions made to disaggregate the total annual catch by species. Historic and GLM-standardised CPUE data are given in Table 2. The GLM-standardised CPUE series are from Glazer (2003).

Survey biomass estimates and catch-at-age data are shown in Tables 3 to 6. No new data of this type since those used in Rademeyer and Butterworth (2002) are as yet available.

#### Methods

The updated assessments ("Case 3") of the *M. paradoxus* stock as a whole (west and south coasts combined) and of the west coast only are compared to the previous assessments (Rademeyer and Butterworth, 2002 - "Case 1"). In Case 1, residuals about the stock-recruit curve have been directly estimated from year 1985 to 1996 for the west coast only assessments, and from year 1986 to 1993 for

the coasts combined assessments, while in the updated assessment stock-recruit residuals have been estimated in both cases from 1985 to 2003. An intermediate assessment ("Case 2") is also presented for comparison where data up to 2003 are used in fitting the model, but the stock-recruit residuals estimated are as in Case 1. Except for the range over which the stock-recruit residuals are estimated, the age-structured production model used is exactly the same in all assessments, only the data input change and the period considered has been extended. This model is described in Rademeyer and Butterworth (2002).

#### **Results and Discussion**

In Rademeyer and Butterworth (2002), three variants of the model (varying in term of the shape of the selectivity function at older ages) are compared. Here, only the intermediate variant (with a selectivity slope of 0.2 – the best fit in both the west coast and two coast cases) is presented.

Table 7 summarises the results of the model for each of the three Cases described above, for both the 'West Coast only' and the 'Both Coasts' cases. Fig. 1 compares the population trajectories for Cases 1 and 3. The decrease in the CPUE in recent years results in a less optimistic view of the current status and trends of the resource. The MSY and related estimates on the other hand are not affected appreciably.

Fig. 2 shows the fit of the CPUE and survey indices to Case 3. The model shows broadly reasonable fits to the CPUE indices, however, it does not fit the positive trend shown by the survey biomass estimates. Fig. 3 shows the fit of Case 3 to the survey catch-at-age data as averaged over all the years with data. Fig. 4 is the 'bubble' plot of the standardised catch-at-age residuals. In both the "West coast only" and "Both coasts combined" assessments there is a consistent pattern of too many large (4+) fish predicted in the catches-at-age.

Fig. 5 plots the stock-recruitment curve, and Fig. 6 shows the standardised residuals about the stock-recruitment curve, for Case 3. Because there are no catch-at-age data for the last few years of the assessment, deviations about the stock-recruitment curve can not be estimated satisfactorily, and are set to zero by the stock-recruitment penalty function term in the penalised likelihood. Over the later half of the 1990s, recruitment is now estimated to have been consistently below average, which in term leads to the recent decreasing trend in spawning biomass shown for Case 3 in Fig. 1.

Fig. 7 shows the spawning biomass projected to 2020 under a selection of constant catch strategies. For each case, the catches were selected (to the nearest thousand tons) as a) the one keeping the spawning biomass roughly constant over the last 10 years of the projection period, b) 5 thousand tons above this value and, c) 5 thousand tons below this value. These longer term replacement yield values are some 28 thousand tons larger for the 'Both Coasts' than for the 'West Coast only' for the 1999 assessment; this difference increases to 31 thousand tons for the 2003 assessment.

# References

- Glazer, J. 2003. The standardized *Merluccius paradoxus* CPUE series. Unpublished report, MCM, South Africa. WG/10/03/D:H:7.
- Rademeyer R.A. and Butterworth D.S. 2002. An Age-Structured Production Model applied to the *Merluccius paradoxus* Hake resource off the South and West Coasts. Unpublished report, MCM, South Africa. WG/10/02/D:H:16.

**Table 1**: Assumed total annual catches by coast for *M. paradoxus* for the period 1917 to 2003. Catches are given in thousand tons. Here, and in subsequent Tables, data that are newly added to or changed from those used in Rademeyer and Butterworth (2002) are shown in bold.

| Year | South coast | West coast | Total   | Year | South coast | West coast | Total   |
|------|-------------|------------|---------|------|-------------|------------|---------|
| 1917 |             | 0.920      | 0.920   | 1961 |             | 136.733    | 136.733 |
| 1918 |             | 1.011      | 1.011   | 1962 |             | 135.722    | 135.722 |
| 1919 |             | 1.747      | 1.747   | 1963 |             | 155.859    | 155.859 |
| 1920 |             | 0.000      | 0.000   | 1964 |             | 149.239    | 149.239 |
| 1921 |             | 1.195      | 1.195   | 1965 |             | 186.663    | 186.663 |
| 1922 |             | 0.920      | 0.920   | 1966 |             | 179.307    | 179.307 |
| 1923 |             | 2.299      | 2.299   | 1967 | 2.657       | 162.480    | 165.137 |
| 1924 |             | 1.379      | 1.379   | 1968 | 7.735       | 132.044    | 139.779 |
| 1925 |             | 1.747      | 1.747   | 1969 | 11.475      | 151.813    | 163.289 |
| 1926 |             | 1.287      | 1.287   | 1970 | 6.444       | 131.032    | 137.476 |
| 1927 |             | 0.736      | 0.736   | 1971 | 8.869       | 185.744    | 194.613 |
| 1928 |             | 2.391      | 2.391   | 1972 | 19.825      | 224.302    | 244.127 |
| 1929 |             | 3.494      | 3.494   | 1973 | 24.382      | 145.084    | 169.466 |
| 1930 |             | 4.046      | 4.046   | 1974 | 32.888      | 113.101    | 145.989 |
| 1931 |             | 2.575      | 2.575   | 1975 | 24.421      | 82.405     | 106.826 |
| 1932 |             | 13.149     | 13.149  | 1976 | 18.798      | 132.314    | 151.112 |
| 1933 |             | 10.207     | 10.207  | 1977 | 13.383      | 94.093     | 107.477 |
| 1934 |             | 12.689     | 12.689  | 1978 | 13.947      | 95.335     | 109.281 |
| 1935 |             | 13.793     | 13.793  | 1979 | 15.475      | 84.400     | 99.874  |
| 1936 |             | 16.276     | 16.276  | 1980 | 15.328      | 93.762     | 109.091 |
| 1937 |             | 18.574     | 18.574  | 1981 | 7.880       | 91.704     | 99.584  |
| 1938 |             | 19.402     | 19.402  | 1982 | 14.051      | 78.260     | 92.312  |
| 1939 |             | 18.390     | 18.390  | 1983 | 12.447      | 68.938     | 81.385  |
| 1940 |             | 26.298     | 26.298  | 1984 | 13.960      | 81.354     | 95.314  |
| 1941 |             | 28.137     | 28.137  | 1985 | 18.651      | 95.089     | 113.740 |
| 1942 |             | 31.724     | 31.724  | 1986 | 21.071      | 104.435    | 125.506 |
| 1943 |             | 34.850     | 34.850  | 1987 | 13.801      | 100.118    | 113.919 |
| 1944 |             | 31.356     | 31.356  | 1988 | 14.767      | 86.409     | 101.176 |
| 1945 |             | 26.850     | 26.850  | 1989 | 14.112      | 81.341     | 95.453  |
| 1946 |             | 37.149     | 37.149  | 1990 | 17.335      | 76.573     | 93.908  |
| 1947 |             | 38.068     | 38.068  | 1991 | 20.999      | 84.260     | 105.258 |
| 1948 |             | 54.068     | 54.068  | 1992 | 24.446      | 84.660     | 109.106 |
| 1949 |             | 52.781     | 52.781  | 1993 | 19.451      | 96.745     | 116.196 |
| 1950 |             | 66.206     | 66.206  | 1994 | 16.622      | 101.836    | 118.458 |
| 1951 |             | 82.297     | 82.297  | 1995 | 19.536      | 93.874     | 113.409 |
| 1952 |             | 81.654     | 81.654  | 1996 | 34.451      | 90.201     | 124.652 |
| 1953 |             | 85.975     | 85.975  | 1997 | 29.290      | 91.480     | 120.770 |
| 1954 |             | 96.918     | 96.918  | 1998 | 21.450      | 107.388    | 128.837 |
| 1955 |             | 106.113    | 106.113 | 1999 | 29.772      | 84.596     | 114.368 |
| 1956 |             | 108.688    | 108.688 | 2000 | 28.231      | 89.525     | 117.756 |
| 1957 |             | 116.228    | 116.228 | 2001 | 30.417      | 91.344     | 121.761 |
| 1958 |             | 120.182    | 120.182 | 2002 | 33.336      | 81.970     | 115.306 |
| 1959 |             | 134.251    | 134.251 | 2003 | 34.745      | 90.056     | 124.801 |
| 1960 |             | 147.032    | 147.032 |      |             |            |         |

|      | South       | coast    | West        | coast    | Combined |
|------|-------------|----------|-------------|----------|----------|
| Year | ICSEAF CPUE | GLM CPUE | ICSEAF CPUE | GLM CPUE | GLM CPUE |
|      | tons/hr     | kg/min   | tons/day    | kg/min   | kg/min   |
| 1955 |             |          | 17.31       |          |          |
| 1956 |             |          | 15.64       |          |          |
| 1957 |             |          | 16.47       |          |          |
| 1958 |             |          | 16.26       |          |          |
| 1959 |             |          | 16.26       |          |          |
| 1960 |             |          | 17.31       |          |          |
| 1961 |             |          | 12.09       |          |          |
| 1962 |             |          | 14.18       |          |          |
| 1963 |             |          | 13.97       |          |          |
| 1964 |             |          | 14.60       |          |          |
| 1965 |             |          | 10.84       |          |          |
| 1966 |             |          | 10.63       |          |          |
| 1967 |             |          | 10.01       |          |          |
| 1968 |             |          | 10.01       |          |          |
| 1969 | 1.28        |          | 8.62        |          |          |
| 1970 | 1.22        |          | 7.23        |          |          |
| 1971 | 1.14        |          | 7.09        |          |          |
| 1972 | 0.64        |          | 4.90        |          |          |
| 1973 | 0.56        |          | 4.97        |          |          |
| 1974 | 0.54        |          | 4.65        |          |          |
| 1975 | 0.37        |          | 4.66        |          |          |
| 1976 | 0.40        |          | 5.35        |          |          |
| 1977 | 0.42        |          | 4.84        |          |          |
| 1978 |             | 2.237    |             | 10.275   | 12.512   |
| 1979 |             | 1.943    |             | 10.842   | 12.785   |
| 1980 |             | 2.701    |             | 10.267   | 12.968   |
| 1981 |             | 1.732    |             | 10.111   | 11.843   |
| 1982 |             | 2.569    |             | 9.548    | 12.135   |
| 1983 |             | 2.806    |             | 10.905   | 13.710   |
| 1984 |             | 3.239    |             | 11.414   | 14.653   |
| 1985 |             | 4.265    |             | 13.183   | 17.430   |
| 1986 |             | 4.805    |             | 11.527   | 16.332   |
| 1987 |             | 3.889    |             | 9.642    | 13.531   |
| 1988 |             | 3.333    |             | 9.066    | 12.399   |
| 1989 |             | 3.029    |             | 9.794    | 12.823   |
| 1990 |             | 3.561    |             | 9.640    | 13.202   |
| 1991 |             | 4.806    |             | 11.618   | 16.424   |
| 1992 |             | 5.120    |             | 11.043   | 16.162   |
| 1993 |             | 5.036    |             | 10.259   | 15.295   |
| 1994 |             | 4.426    |             | 10.945   | 15.372   |
| 1995 |             | 4.321    |             | 10.306   | 14.626   |
| 1996 |             | 6.592    |             | 10.939   | 17.531   |
| 1997 |             | 6.101    |             | 10.473   | 16.573   |
| 1998 |             | 5.645    |             | 12.222   | 17.866   |
| 1999 |             | 6.687    |             | 9.687    | 16.374   |
| 2000 |             | 6.371    |             | 10.265   | 16.635   |
| 2001 |             | 6.616    |             | 9.420    | 16.036   |
| 2002 |             | 5.008    |             | 8.617    | 13.625   |

**Table 2**: Historic (1969 to 1977) and GLM standardised (1978 to 2002) CPUE data for *M. paradoxus*.The historic CPUE series is for *M. capensis* and *M. paradoxus* combined.

|      |         | South   | coast   |          |         | West      | coast   |           | Com     | bined     |
|------|---------|---------|---------|----------|---------|-----------|---------|-----------|---------|-----------|
| Year | Spri    | ng      | Autu    | ımn      | Sun     | nmer      | Wi      | nter      | Autumn  | /Summer   |
|      | Biomass | (s.e.)  | Biomass | (s.e.)   | Biomass | (s.e.)    | Biomass | (s.e.)    | Biomass | (s.e.)    |
| 1985 |         |         |         |          | 168.139 | (36.607)  | 264.916 | (52.968)  |         |           |
| 1986 | 23.049  | (5.946) |         |          | 196.151 | (36.366)  | 172.522 | (24.129)  | 1       |           |
| 1987 | 21.545  | (4.601) |         |          | 284.859 | (53.108)  | 195.530 | (44.425)  | 1       |           |
| 1988 |         | ļ       | 30.236  | (11.084) | 158.796 | (27.390)  | 233.103 | (64.016)  | 189.032 | (29.547)  |
| 1989 |         | ļ       |         |          |         |           | 468.928 | (124.878) | 1       | I         |
| 1990 |         | ļ       |         |          | 282.225 | (78.956)  | 226.910 | (46.016)  | 1       |           |
| 1991 |         | ļ       | 26.604  | (10.431) | 327.105 | (82.209)  |         |           | 353.709 | (82.868)  |
| 1992 |         | ļ       | 24.305  | (15.197) | 234.699 | (33.963)  |         |           | 259.004 | (37.208)  |
| 1993 |         | ļ       | 198.403 | (98.423) | 321.782 | (48.799)  |         |           | 520.185 | (109.856) |
| 1994 |         | ļ       | 111.354 | (34.622) | 329.927 | (58.332)  |         |           | 441.281 | (67.833)  |
| 1995 |         | ļ       | 44.618  | (19.823) | 324.626 | (80.370)  |         |           | 369.244 | (82.778)  |
| 1996 |         | ļ       | 85.530  | (25.485) | 430.971 | (80.614)  |         |           | 516.501 | (84.547)  |
| 1997 |         | ļ       | 134.656 | (50.922) | 570.091 | (108.230) | l       |           | 704.747 | (119.611) |
| 1998 |         | ļ       |         |          |         |           | l       |           |         |           |
| 1999 |         | ļ       | 1       |          | 562.988 | (116.322) |         |           |         |           |

**Table 3**: Survey abundance estimates and associated standard errors in thousand tons for *M. paradoxus* for depth range 0-500m for the south coast and west coast. The combined estimates are obtained by adding the South Coast autumn estimates to the West Coast summer estimates.

**Table 4**: Autumn survey catches-at-age (proportions) of *M. paradoxus* on the south coast for the 0-500mdepth range.

|      |        | Proport | ions caught at ag | e: Merluccius par | adoxus |        |
|------|--------|---------|-------------------|-------------------|--------|--------|
|      | 0      | 1       | 2                 | 3                 | 4      | 5+     |
| 1991 | 0.0038 | 0.0099  | 0.5219            | 0.2920            | 0.1162 | 0.0563 |
| 1992 | 0.0000 | 0.0006  | 0.3698            | 0.5407            | 0.0653 | 0.0236 |
| 1993 | 0.0000 | 0.0047  | 0.4157            | 0.5439            | 0.0260 | 0.0097 |
| 1994 | 0.0054 | 0.0898  | 0.6558            | 0.1857            | 0.0170 | 0.0463 |
| 1995 | 0.0002 | 0.0002  | 0.1241            | 0.7729            | 0.0886 | 0.0139 |
| 1996 | 0.0000 | 0.0000  | 0.0968            | 0.7494            | 0.0999 | 0.0539 |
| 1997 | 0.0002 | 0.0012  | 0.1108            | 0.5806            | 0.1055 | 0.2016 |

|      |        | Proport | ions caught at ag | e: Merluccius par | radoxus |        |
|------|--------|---------|-------------------|-------------------|---------|--------|
|      | 0      | 1       | 2                 | 3                 | 4       | 5+     |
| 1990 | 0.0285 | 0.3098  | 0.4918            | 0.1583            | 0.0088  | 0.0017 |
| 1991 | 0.0182 | 0.2777  | 0.5608            | 0.1069            | 0.024   | 0.0079 |
| 1992 | 0.0098 | 0.3834  | 0.4847            | 0.0824            | 0.0231  | 0.0118 |
| 1993 | 0.0089 | 0.1995  | 0.5469            | 0.1866            | 0.0439  | 0.0097 |
| 1994 | 0.0107 | 0.2441  | 0.5508            | 0.1656            | 0.0174  | 0.0078 |
| 1995 | 0.0651 | 0.1905  | 0.4435            | 0.2583            | 0.0282  | 0.0096 |
| 1996 | 0.0572 | 0.3939  | 0.3018            | 0.2096            | 0.0298  | 0.005  |
| 1997 | 0.0055 | 0.1708  | 0.5459            | 0.2564            | 0.0164  | 0.0032 |
| 1998 |        |         |                   |                   |         |        |
| 1999 | 0.1613 | 0.4099  | 0.3358            | 0.0808            | 0.0084  | 0.0026 |

**Table 5**: Summer survey catches-at-age (proportions) of *M. paradoxus* on the west coast for the 0-500mdepth range.

 Table 6: Autumn/summer survey catches-at-age (proportions) of *M. paradoxus* for the two coasts combined for the 0-500m depth range.

|      |        | Proport | ions caught at ag | e: Merluccius par | radoxus |        |
|------|--------|---------|-------------------|-------------------|---------|--------|
|      | 0      | 1       | 2                 | 3                 | 4       | 5+     |
| 1991 | 0.0177 | 0.2679  | 0.5594            | 0.1137            | 0.0274  | 0.0140 |
| 1992 | 0.0093 | 0.3653  | 0.4793            | 0.1039            | 0.0251  | 0.0170 |
| 1993 | 0.0064 | 0.1442  | 0.5097            | 0.2881            | 0.0388  | 0.0129 |
| 1994 | 0.0098 | 0.2174  | 0.5690            | 0.1691            | 0.0173  | 0.0175 |
| 1995 | 0.0605 | 0.1769  | 0.4206            | 0.2951            | 0.0325  | 0.0145 |
| 1996 | 0.0529 | 0.3642  | 0.2863            | 0.2503            | 0.0351  | 0.0112 |
| 1997 | 0.0052 | 0.1611  | 0.5212            | 0.2748            | 0.0215  | 0.0162 |

| s for the west coast component of the resource only and for both coasts | 3 (see text for details).   |
|-------------------------------------------------------------------------|-----------------------------|
| nanagement quantities for th                                            | shown for Cases 1 to 3 (see |
| Table 7: Estimates of m                                                 | combined. Results are s     |

|                                     |                             | West coast only                       |                                                           | West                             | und south coasts combined                         | only                                                      |
|-------------------------------------|-----------------------------|---------------------------------------|-----------------------------------------------------------|----------------------------------|---------------------------------------------------|-----------------------------------------------------------|
|                                     | Case 1<br>(data up to 1999) | Case 2<br>(as Case 1 but with data up | Case 3<br>(as Case 2 but with SR<br>residuals un to 2003) | Case 1<br>(data up to 1999)      | Case 2<br>(as Case 1 but with data up<br>40.2003) | Case 3<br>(as Case 2 but with SR<br>residuals un to 2003) |
| Total -InL                          | -113.14                     | -108.55                               | -118.34                                                   | -111.25                          | -109.89                                           | -125.72                                                   |
| -hL : CPUE                          | -93.73                      | -87.26                                | -101.77                                                   | -96.98                           | -94.15                                            | -111.64                                                   |
| -InL: Survey                        | -12.15                      | -11.50                                | -11.44                                                    | -6.11                            | -5.62                                             | -6.05                                                     |
| -hL: CAA com.                       | •                           |                                       |                                                           |                                  |                                                   |                                                           |
| -InL: CAA surv                      | -9.82                       | -12.09                                | -9.34                                                     | -9.18                            | -10.67                                            | -11.20                                                    |
| -InL: SR Residuals                  | 2.56                        | 2.30                                  | 4.20                                                      | 1.02                             | 0.55                                              | 3.18                                                      |
| $K^{sp}$                            | 674                         | 668                                   | 668                                                       | 813                              | 835                                               | 787                                                       |
| K <sup>ex</sup>                     | 870                         | 889                                   | 871                                                       | 926                              | 953                                               | 868                                                       |
| $B^{sp}_{2003}$                     | 160                         | 108                                   | 87                                                        | 191                              | 144                                               | 102                                                       |
| B <sup>&amp;x</sup><br>2003         | 237                         | 170                                   | 153                                                       | 276                              | 218                                               | 173                                                       |
| h                                   | 0.641                       | 0.603                                 | 0.634                                                     | 0.763                            | 0.731                                             | 0.795                                                     |
| de TASM                             | 202                         | 209                                   | 202                                                       | 211                              | 228                                               | 194                                                       |
| xe TASM                             | 304                         | 314                                   | 304                                                       | 306                              | 324                                               | 287                                                       |
| MSY                                 | 123                         | 119                                   | 122                                                       | 142                              | 140                                               | 143                                                       |
| $B^{sp}_{2003}/K^{sp}$              | 0.238                       | 0.161                                 | 0.130                                                     | 0.235                            | 0.172                                             | 0.129                                                     |
| $B^{ex}_{2003}/K^{ex}$              | 0.273                       | 0.191                                 | 0.176                                                     | 0.298                            | 0.229                                             | 0.193                                                     |
| B SP 2003/MSYL SP                   | 0.793                       | 0.514                                 | 0.432                                                     | 0.904                            | 0.630                                             | 0.526                                                     |
| Bex 2003/MSYL ex                    | 0.782                       | 0.539                                 | 0.503                                                     | 0.903                            | 0.673                                             | 0.604                                                     |
| ds X/ds TASW                        | 0.300                       | 0.313                                 | 0.302                                                     | 0.260                            | 0.273                                             | 0.246                                                     |
| WSYL <sup>ax</sup> /K <sup>ex</sup> | 0.349                       | 0.354                                 | 0.349                                                     | 0.330                            | 0.339                                             | 0.320                                                     |
| Age                                 | Ma Ssur Slow S2000          | Ma Saur Slon S200                     | Ma Sour Slow S2000                                        | $M_a$ Surr $S_1^{com} S_2^{com}$ | Ma Surr Slon S2                                   | Ma Source Sloom S2000                                     |
| 0                                   | 0.99 0.01 0.00 0.00         | 1.04 0.01 0.00 0.00                   | 1.01 0.01 0.00 0.00                                       | 0.80 $0.01$ $0.00$ $0.00$        | 0.80 0.01 0.00 0.00                               | 0.80 0.01 0.00 0.00                                       |
| 1                                   | $0.99 \ 0.24 \ 0.00 \ 0.00$ | 1.04 0.22 0.00 0.00                   | 1.01 0.24 0.00 0.00                                       | 0.80 0.22 0.00 0.00              | 0.80 0.22 0.00 0.00                               | 0.80 0.23 0.00 0.00                                       |
| 2                                   | 0.99 1.00 0.70 0.12         | 1.04 1.00 0.70 0.12                   | 1.01 1.00 0.70 0.12                                       | 0.80 1.00 0.70 0.12              | 0.80 1.00 0.70 0.12                               | 0.80 1.00 0.70 0.12                                       |
| 3                                   | 0.75 1.00 1.00 0.98         | 0.78 1.00 1.00 0.98                   | $0.76 \ 1.00 \ 1.00 \ 0.98$                               | $0.60 \ 1.00 \ 1.00 \ 0.98$      | 0.60 1.00 1.00 0.98                               | 0.60 1.00 1.00 0.98                                       |
| 4                                   | 0.60 0.82 0.82 1.00         | 0.63 0.82 0.82 1.00                   | 0.61 0.82 0.82 1.00                                       | 0.48 0.82 0.82 1.00              | 0.49 0.82 0.82 1.00                               | 0.48 0.82 0.82 1.00                                       |
| ÷.                                  | 0.50 0.67 0.67 0.82         | 0.52 0.67 0.67 0.82                   | 0.51 0.67 0.67 0.82                                       | 0.40 0.67 0.67 0.82              | 0.41 0.67 0.67 0.82                               | 0.41 0.67 0.67 0.82                                       |
| Commercial q's:<br>SC ICSEAF CPUE   |                             |                                       |                                                           | 0.003                            | 0.003                                             | 0.003                                                     |
| WC ICSEAF CPUE                      | 0.028                       | 0.027                                 | 0.028                                                     | 0.027                            | 0.026                                             | 0.028                                                     |
| GLM CPUE                            | 0.061                       | 0.064                                 | 0.061                                                     | 0.080                            | 0.081                                             | 0.083                                                     |
| Commercial sigma's:                 |                             |                                       |                                                           |                                  |                                                   |                                                           |
| SC ICSEAF CPUE                      |                             |                                       |                                                           | 0.207                            | 0.213                                             | 0.202                                                     |
| WC ICSEAF CPUE                      | 0.112                       | 0.114                                 | 0.113                                                     | 0.116                            | 0.115                                             | 0.119                                                     |
| GLM CPUE                            | 0.050                       | 0.086                                 | 0.049                                                     | 0.065                            | 0.094                                             | 0.047                                                     |
| Survey q's:                         | 0.056                       | 0.060                                 | 0.055                                                     | 1 103                            | 1 103                                             | 1110                                                      |
| Winter                              | 0.901                       | 0.922                                 | 0.897                                                     | 0011                             | 001.1                                             | <u></u>                                                   |
| Catches-at-age sigma's:             | 0.142                       | 0.138                                 | 0.143                                                     | 0.142                            | 0.137                                             | 0.144                                                     |
| Addnl sigma (survey)                | 0.248                       | 0.263                                 | 0.264                                                     | 0.256                            | 0.256                                             | 0.258                                                     |



**Fig. 1**: Estimated spawning biomass (as a proportion of the pre-exploitation level) for a) the west coast component of and b) the whole (both coasts) of the *M. paradoxus* resource, for Cases 1 and 3. MSYL is also shown.



**Fig. 2**: Case 3 fits for *M. paradoxus* to the abundance indices for the "West coast only" and "Both coasts combined" assessments. The historic (pre-1978) CPUE data are for both *M. capensis* and *M. paradoxus* combined.



**Fig. 3**: Case 3 fit to catches-at-age, as averaged over all the years with data, for the "West coast only" and "Both coasts combined" assessments.



**Fig. 4**: "Bubble plots" of the survey catch-at-age residuals for the "West coast only" and "Both coasts combined" assessments, Case 3. The size (radius) of the bubbles is proportional to the standardized residuals. For positive residuals, the bubbles are gray and for negative residuals, the bubbles are white.



**Fig. 5**: Estimated stock-recruitment relationship for the "West coast only" and "Both coasts combined" assessments, Case 3. Note that the differences in recruitment levels in absolute terms reflect the different values of *M* estimated for the two cases.



**Fig. 6**: Standardised residuals about the stock-recruitment curve for Case 3, for the "West coast only" and "Both coasts combined" assessments.



**Fig. 7**: Projected spawning biomass under selected constant catch strategies, for the 'West Coast only' component of the *M. paradoxus* and 'Both Coasts', for Cases 1 and 3. The catches are in thousands of tons. MSYL is also shown.