Appendix 12 : Replacement Yield Model fits to Angolan horse mackerel data.

S.J. Johnston

A replacement yield model has been fitted to the Angolan horse mackerel survey biomass data and catch data for the period 1985-2004.

Three series of data are available: T. trecae only, T. capensis only, and T. trecae and T. capensis combined.

The replacement yield model fitted to the data is simply:
$B_{t+1}=B_{t}+R Y-C_{t}$ and
$S_{t}=q B_{t} e^{\varepsilon}$,
where $R Y=$ replacement yield, and S_{t} is the survey biomass estimate.

We assume $q=1$, i.e. that the survey biomass estimates are absolute biomass estimates. The estimable parameters are thus B_{1985} (the first year biomass), and $R Y$.

The data are reported in Table 1. Model results are reported in Table 2. Standard errors (Hessian-based) are reported in parenthesis. Figure 1 provides the model fits to the survey data as well as plots of biomass and catch.
[The T. capensis catch value for 2001 of 255000 t seems somewhat unrealistic. The T. capensis catch values are calculated by using the relative ratio of trecae:capensis in the survey biomass, and the trecae catch series. In 2001, it was reported from the survey that the capensis biomass was more than twice the size of that of trecae, and this results in the capensis catch being so large for that year.]

Table 1: Catch (in t) and survey biomass (in ' 000 t) for Angolan horse mackerel.

	Catch T. trecae	Catch T. capensis	Catch T. capensis $\boldsymbol{+}$ T. trecae	Biomass T. trecae	Biomass T. capensis	Biomass T. capensis $\boldsymbol{+}$ T. trecae
1985	29140	14353	43493	450	220	670
1986	92453	12607	105060	285	40	325
1987	77830	17472	95302			
1988	75848	24835	100683		130	448
1989	84638	38026	122664	318		
1990	48710	20947	74366		310	310
1991	33598	13728	54190			820
1992	77212	25548	113547			
1993	63370	16842	85635			
1994	49944	10509	62430	61050	506	63
1995	52503	8547	145017	433	21	569
1996	137766	7251	162144	427	23	454
1997	154037	8107	72365	254	129	350
1998	47761	24604	53634	321	128	483
1999	38080	15554	57778	333	242	575
2000	33511	24267	375000	89	187	276
2001	120000	255000	125560	162	92	254
2002	80358	45202	107143	166	133	299
2003	60000	47143		229	39	268
2004						

Table 2: Model output statistics. [Value in parenthesis is one standard error]. Biomass units are in ' 000 t .

	Both species $\mathbf{1 9 8 5}+$	T. trecae $\mathbf{1 9 8 5}+$	T. capensis $\mathbf{1 9 8 5}+$
B_{1985}	$464(80)$	$443(89)$	$72(48)$
RY	$94(5.2)$	$58(6.0)$	$31(3.1)$
B_{2004}	$272(40)$	$208(40)$	$68(29)$
B_{2004} / B_{1985}	$0.59(0.13)$	$0.47(0.15)$	$0.95(0.57)$

Figure 1a: Model fits to survey biomass (top figure) and plots of biomass and catch (bottom figure) for T. trecae.

Figure 1b: Model fits to survey biomass (top figure) and plots of biomass and catch (bottom figure) for T. capensis.

Figure 1c: Model fits to survey biomass (top figure) and plots of biomass and catch (bottom figure) for both T. trecae. and T. capensis.

