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ABSTRACT 
 

A simple Schaefer-like production model is used in simulations to assess the 
potential benefits or otherwise of attempting to estimate the extent of non-
linearity in a CPUE-abundance relationship (reflected by the parameter β). 
The resource situation considered is similar to that analysed by Hicks 
(2005), though this paper evaluates only estimation based upon CPUE data 
alone. Simulations are conducted for three pre-exploitation values of orange 
roughy abundance, which correspond to a resource which at present is either 
still declining, is approximately stable, or is increasing slightly. CPUE data 
are generated for five different values of the β parameter, and estimators 
which either fix this value, or try to estimate it from the fit of the population 
model to the CPUE data, are considered. An initial impression of the results 
obtained for estimates of the initial biomass, current depletion and current 
replacement yield for the simulated resource is that, in terms of root -mean-
square errors, estimating β can achieve smallish gains in some 
circumstances, but leads to much larger losses in others. 

 
 

 
INTRODUCTION 
 
A matter which has an important impact on the results of assessments of some New Zealand 
orange roughy resources is whether such analyses should internally attempt to estimate the extent 
of possible non-linearity in the relationship between CPUE and abundance, rather than assume 
this relationship to be one of linear proportionality as is customary. 
 
Hicks (2005) has addressed this question using a relatively complex age-structured model of the 
underlying resource dynamics. Here the intention is to complement Hicks’ results by using a 
simple age-aggregated production model (AAPM) for the resource dynamics, to see whether this 
can contribute further insight. 
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METHODS 
 
The intention here is, as far as possible, to mimic the situation considered by Hicks (2005), which 
was based on the New Zealand Mid-East Coast orange roughy fishery, to facilitate the contrasting 
of results. Accordingly, the simulations carried out here utilise the catches in that fishery from 
1982 to 2003, and assume an annual CPUE index with a CV of 0.28 to be available over the 
period from 1984 to 2003 with the exception of 1989. 
 
The deterministic AAPM used for the underlying resource dynamics is a simple “distortion” of 
the Schaefer model that yields MSY at a depletion (MSYL or Bmsy) of 0.3B0 (as conventionally 
assumed for orange roughy resources) rather than 0.5B0  (see Appendix). The MSYR (= MSY/Bmsy) 
parameter of the model is set at 0.04 and is known exactly to the estimator – this is roughly 
equivalent to tests of age-structured model estimators for orange roughy  which assume natural 
mortality M and steepness h to be known without error. Three underlying scenarios for current 
resource status are investigated, spanning a range of current resource depletion (B2004/B0) of some 
10-35% within which current estimates (depending on assumptions) for the Mid-East Coast 
orange roughy resource lie (P. Mace, pers. commn). The values of B0 selected for these scenarios 
are 130 000, 140 000 and 160 000 thousand tons, and correspond respectively to current 
depletions of 10, 20 and 33% of the resource, or equivalently to instances where the resource 
over the most recent five years has been declining quite rapidly (5.5% p.a), declining slightly (1% 
p.a.) and increasing slightly (0.2% p.a.). 
 
The possible non-linearity in the relationship between CPUE and abundance (B) is modelled as: 
 

εβ eqBCPUE =  where ε ~ N(0, σ2)     (1) 
 
where in a slight extension of Hicks (2005), values of β of 0.625, 1, 1.6, 2 and 4 are considered. 
As in Hicks (2005) σ = 0.28. The combination of three values for B0 and five values for β leads to 
15 scenarios (see Table 1). For each of these scenarios, 100 sets of CPUE values over the period 
from 19821 to 2003 (excluding 1989) are generated to provide a basis to contrast the performance 
of different estimators. 
 
The two AAPM-based estimators considered both assume exact knowledge of the form of the 
surplus production function and of the MSYR parameter. The first assumes linear proportionality 
between CPUE and B (i.e. that β = 1), and estimates B0, σ and q. The second attempts estimation 
of β as well as these other three parameters. 
 
Further details of the underlying model and the estimators may be found in the Appendix. 
 
 

                                                 
1 At the stage of checking of the final results for this paper, it was realised that CPUE data had inadvertently been 
generated from 1982, rather than from 1984 as intended to duplicate Hicks (2005). This should not, however, have a 
major impact on the results. 
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RESULTS AND DISCUSSION 
 
Results of the simulations in terms of distributions of estimates (reflected by medians and 90% 
probability intervals) compared to true underlying values are shown in Fig. 1 for three quantities 
of management interest: B0, B2003/B0 and the current replacement yield RY2003 (i.e. the catch that 
would maintain the biomass at its 2003 level). For the case where β = 4, the results may not be 
entirely reliable as there were indications that the estimation minimisation had not converged on 
all occasions. This also occurred for lower values of β, but with much less frequency. 
 
As expected, estimating β increases estimation variance. The question is whether there is 
sufficient compensatory decrease in bias to justify such estimation. Note that although estimators 
which assume β = 1 when this happens to be the true value give unbiased results for the three 
quantities shown in Fig. 1, bias is not totally removed when β is estimated (even when the true β 
is 1). Because of possible confounding as a result of convergence difficulties, results for β = 4 are 
not considered in the comments below. 
 
Patterns amongst the results differ depending on the true value for B0, though the more 
fundamental distinction is likely whether the biomass trend is still downwards, is almost stable, 
or is slightly increasing. As far as bias is concerned, for the three quantities considered: 

• B0: marginal improvement for the downward trend case; otherwise little to 
choose. 

• B2003/B0: definite improvement for the almost stable case; otherwise minimal. 
• RY2003: comments as for B2003/B0. 

 
To assist gauge whether these decreases in bias do offset the increases in variance, Table 2 lists 
the ratio of the root-mean-square errors (RMSE’s) for the estimator estimating β to that for the 
estimator fixing β = 1. A general impression from this Table is that while estimating β is 
advantageous in some circumstances, the benefit obtained in terms of the RMSE’s are not very 
large; on the other hand, there are a number of other situations where estimating β leads to a 
fairly substantial deterioration in overall estimation performance. 
 
The calculations reported have considered the case where only CPUE information (being a 
relative measure of abundance) is available. Hydroacoustic surveys (for example) have the 
potential to provide information on abundance B in absolute terms. A possible further step for 
computations such as those reported here is to consider the impact of the availability of such 
information on the performance of different estimators, but taking account of the fact that such 
information will have associated variance and may also be biased. 
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Table 1.  Description of the different scenarios and estimators for the combinations considered in 
this paper. 

 
 

Combination Scenario Estimator specification 
1 B0 = 130 000, β = 0.625 Set β = 1 
2 B0 = 130 000, β = 1.0 Set β = 1 
3 B0 = 130 000, β = 1.6 Set β = 1 
4 B0 = 130 000, β = 2.0 Set β = 1 
5 B0 = 130 000, β = 4.0 Set β = 1 
6 B0 = 130 000, β = 0.625 Estimate β 
7 B0 = 130 000, β = 1.0 Estimate β 
8 B0 = 130 000, β = 1.6 Estimate β 
9 B0 = 130 000, β = 2.0 Estimate β 
10 B0 = 130 000, β = 4.0 Estimate β 
11 B0 = 140 000, β = 0.625 Set β = 1 
12 B0 = 140 000, β = 1.0 Set β = 1 
13 B0 = 140 000, β = 1.6 Set β = 1 
14 B0 = 140 000, β = 2.0 Set β = 1 
15 B0 = 140 000, β = 4.0 Set β = 1 
16 B0 = 140 000, β = 0.625 Estimate β 
17 B0 = 140 000, β = 1.0 Estimate β 
18 B0 = 140 000, β = 1.6 Estimate β 
19 B0 = 140 000, β = 2.0 Estimate β 
20 B0 = 140 000, β = 4.0 Estimate β 
21 B0 = 160 000, β = 0.625 Set β = 1 
22 B0 = 160 000, β = 1.0 Set β = 1 
23 B0 = 160 000, β = 1.6 Set β = 1 
24 B0 = 160 000, β = 2.0 Set β = 1 
25 B0 = 160 000, β = 4.0 Set β = 1 
26 B0 = 160 000, β = 0.625 Estimate β 
27 B0 = 160 000, β = 1.0 Estimate β 
28 B0 = 160 000, β = 1.6 Estimate β 
29 B0 = 160 000, β = 2.0 Estimate β 
30 B0 = 160 000, β = 4.0 Estimate β 
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Table 2.  Ratio of RMSE (estimating β) to RMSE (fix β = 1) for the 15 scenarios considered. 
 

Scenario RMSE ratio 

B0 β B0 B2003/B0 RY2003 

130 000 0.625 3.543 2.718 2.312 
130 000 1.0 1.652 0.981 0.991 
130 000 1.6 0.846 0.935 0.922 
130 000 2.0 0.948 0.988 0.984 
130 000 4.0 0.490 1.222 1.251 
140 000 0.625 5.209 2.566 2.319 
140 000 1.0 4.128 1.029 0.996 
140 000 1.6 1.422 0.807 0.828 
140 000 2.0 0.969 0.840 0.840 
140 000 4.0 3.349 0.585 0.382 
160 000 0.625 7.510 1.243 4.114 
160 000 1.0 12.64 2.051 2.080 
160 000 1.6 3.040 2.051 0.818 
160 000 2.0 1.072 1.204 0.747 
160 000 4.0 0.969 0.974 1.022 
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Figure 1.  Results of the simulations in terms of distributions of estimates (reflected by medians and 90% probability intervals) 

compared to true underlying values for three quantities of management interest: B0, B2003/B0 and RY2003. The horizontal axis denotes 
the different combinations of scenarios and estimators considered (see Table 1), with the first five corresponding to combinations 
for which the parameter β is set to 1, and the next five to ones for which β is estimated. Note that within each group, the true value 
of β changes left to right from 0.625, to 1, to 1.6, to 2.0, and to 4.0. 
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APPENDIX 
 
Underlying Population Model 
 
The dynamics of the resource is modelled by an age-aggregated production model (AAPM) as follows: 

ttt CBfBB −+=+ )(1                                                           (A.1) 
t

t
eqBCPUEt

εβ=                                                                (A.2) 

where: 
 Bt is the biomass at the start of year t, 
f(B) is the surplus production function, 
Ct is the catch made in year t (see Table A.1), 
CPUEt is the (simulated) CPUE in year t, 
q is the constant in the relationship between CPUE and biomass, and 
εt is the log of the observation error for the CPUE in year t, which is assumed to be 

normally distributed with constant variance: N(0, σ2). 
  

The annual surplus production for the Schaefer (logistic) model was adjusted to have BMSY/B0 to be at 
30% (where B0 is the pre-exploitation biomass) instead of at 50%. To ensure derivative continuity, the 
production function was accordingly given by: 
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where: 
r is the intrinsic growth rate parameter, set here to be 0.08, so that MSYR = 0.04, and 
B1982 is set equal to B0. 

 
This adjustment was preferred to use of the Pella-Tomlinson form because that has an unrealistic 
infinite slope at the origin for BMSY/B0 values that are as low as 30%. 
 
Equations (A.1)–(A.3) are used in simulating CPUE abundance indices, where the constant in the 
CPUE series is taken to be 1. The values considered for β in equation (A.2) were 0.625, 1.0, 1.6, 2, and 
4. 
 
Fig. A.1 shows the form of the surplus production function, and Fig. A.2 plots the biomass trajectories 
for the three values considered for B0.  
 



 8 

 
Estimators considered 
 
The model parameters, q , 0B , and σ , and also β for situations where this is estimated rather than fixed 
at 1, are estimated by minimising the negative log-likelihood function: 
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where  
q is the constant in the CPUE-abundance relationship, whose maximum likelihood 

estimate is given by: 

( )( )∑ −=
CPUE

t
tt BCPUE

n
q ˆlnˆln

1ˆln β , and 

σ is the standard deviation of the CPUE series, whose maximum likelihood estimate is 

given by: 
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Table A.1.  Yearly catches of orange roughy (in tons) considered in this paper.  
 

Year Catches 

1982 700 

1983 4000 

1984 9000 

1985 10000 

1986 10000 

1987 10000 

1988 12000 

1989 11000 

1990 12000 

1991 11000 

1992 11000 

1993 9500 

1994 7000 

1995 6000 

1996 1900 

1997 2200 

1998 2300 

1999 2300 

2000 2600 

2001 1800 

2002 1500 

2003 900 
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Figure A.1.  Production function when B0 is 140 000 tons, showing also the corresponding form for a 

Schaefer function. 
 
 
 
 
 
 
 

 
Figure A.2.  Deterministic biomass trajectories that correspond to the three values chosen for B0. 
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