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The south coast rock lobster resource is modelled using an age-structured-production-
model (ASPM). 
 
1. The population model 
 
The resource dynamics are modelled by the equations: 
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where 
 ayN ,  is the number of lobsters of age a at the start of year y, 

 aM  denotes the natural mortality rate on lobsters of age a, 

 aS  is the age-specific selectivity, 

 yF  is the fully selected fishing mortality in year y, and 

 m is the maximum age considered (taken to be a plus-group). 
 
The number of recruits at the start of year y is related to the spawner stock size by a 
stock-recruitment relationship: 
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where 
βα ,  and γ  are spawner biomass-recruitment parameters (γ =1 for a 

Beverton-Holt relationship), 

yς  reflects fluctuation about the expected (median) recruitment for year y, and 
sp
yB  is the spawner biomass at the start of year y, given by: 
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where wa is the begin-year mass of fish at age a and fa is the proportion of fish 
of age a that are mature. 

 
In order to work with estimable parameters that are more meaningful biologically, the 
stock-recruit relationship is re-parameterised in terms of the pre-exploitation 
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equilibrium spawning biomass, spK , and the “steepness” of the stock-recruit 
relationship (recruitment at spsp KB 2.0=  as a fraction of recruitment at spsp KB = ): 
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where 



















−

∑

+
∑

= ∑
−

=
−

−
−

−

=

−

=

1

1
1

1
/

1

0'
'1

0'
'm

a
M

M

mm

M

aa
sp

m

m

a
aa

a
a

e

e
wfewfKR    (8) 

 
The total catch by mass in year y is given by: 
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where 
2

1
+a

w  denotes the mid-year mass of a lobster at age a. 

The model estimate of mid-year exploitable biomass is given by: 
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where 

 yB̂  is the model estimate of exploitable biomass for year y, and 

 aS  is the fishing selectivity-at-age for age a. 

  
Models that do not allow for the possibility of fluctuations about the stock-recruitment 
relationship (i.e. those which set 0=yς  in equation 4) assume that the resource is at 

the deterministic equilibrium that corresponds to an absence of harvesting at the start 
of the initial year ( spsp KB =1973 ). For models that allow for that possibility, this 

assumption together with that of the associated equilibrium age-structure is made for 
1973, with the biomass and age-structure thereafter potentially impacted by such 
fluctuations. 
 
Commercial selectivity-at-age: The following time-invariant logistic curve is 
assumed for the commercial selectivity: 
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where 
 50a  is the age-at-50% selectivity which is estimated,  

 ∆ 5095 aa −= , which is estimated, and where 

 95a  is the age-at-95% selectivity. 
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Time-varying selectivity-at-age: 
In some models the selectivity function (which depends on age) is allowed to vary 
over the time period for which catch-at-age data are available (1994-2003). To effect 
this, the form of the selectivity function is generalised to: 
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The estimable parameters are thus: ∆,50a and yδ  for y = 1994-2003 (excluding 

1999 as there are no catch-at-age data for 1999). 
 
It is also assumed that for y < 1994, 1999, and 2004+ the yδ = 0. 

  
An extra term is added to the likelihood function in order to smooth the extent of 
change in the selectivity, as follows: 
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where the selσ  is input (a value of 0.75 was found to provide reasonable 

performance). 
 
Another issue is that for equation (1), if yδ  decreases, this means that selectivity is 

increasing on younger lobsters, while given that the model fitting procedure assumes 
that 
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this situation seems implausible, in that an enhanced CPUE would result even if there 
was no increase in abundance. 
 
Presumably enhanced catches of younger animals are achieved by spatially 
redistributing effort on a scale finer than captured by the GLM standardisation of the 
CPUE. A standard method to adjust for this, while maintaining a constant catchability 
coefficient q, is to renormalise the selectivity function in some way: 
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where here as a simple initial approach we have chosen: 
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i.e., normalising selectivity by its average over a certain age range, so that now if 

yδ decreases, the * ,ayS  will decrease for large a to compensate for the effort spread to 

locations where younger animals are found associated with the increase for smaller a. 
 
The authors experimented with choices for a1 and a2. A choice of a1=8 and a2=12 as 
a standard gave reasonable performance. The table below shows the effect of 
increasing a2 from 12 to 16. 
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selσ = 0.75 selσ = 0.75 selσ = 0.75 

a1 8 8 8 
a2 12 13 16 
σ  CPUE 0.146 0.153 0.177 
-lnL CPUE -38.43 -37.16 -33.01 
σ  catch-at-age 0.057 0.057 0.056 
-lnL catch-at-age -113 -113 -114 
-lnL sel 5.25 5.39 4.47 
-lnL (TOTAL) -144.47 -143.84 -141.52 
MSY (MT) 423 435 426 

exp
04B /K 0.162 0.203 0.264 

MSYL 0.164 0.153 0.160 
 
What was found was that for values of a2 larger than 12, the fit to the observed CPUE 
deteriorated quite considerably, and the model was not able to reproduce the recent 
upward trend in CPUE. 
 
 
2. The likelihood function 
The model is fitted to CPUE and catch-at-age or catch-at-length data to estimate 
model parameters. Contributions by each of these to the negative log-likelihood (-lnL) 
are as follows: 
 
2.1 Relative abundance data (CPUE) 
The likelihood is calculated assuming that the observed abundance index is log-
normally distributed about its expected (median) value: 

   yeqBCPUE yy
ε=  or )ln()ln( yyy qBCPUE −=ε             (17) 

where 
 CPUEy is the CPUE abundance index for year y, 

By is the model estimate of mid-year exploitable biomass for year y given by  
equation 10, 

 q is the constant of proportionality (catchability coefficient), and 
 yε  from ),0( 2σN . 

 
The contribution of the abundance data to the negative of the log-likelihood function 
(after removal of constants) is given by: 
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where 
σ  is the residual standard deviation estimated in the fitting procedure by its 
maximum likelihood value: 
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where 
 n is the number of data points in the CPUE series, and 
 q is the catchability coefficient, estimated by its maximum likelihood value: 
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2.2 Catches-at-age 
The contribution of the catch-at-age data to the negative of the log-likelihood function 
when assuming a log-normal error distribution and when making an adjustment to 
effectively weight in proportion to sample size is given by: 
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and ageσ  is the standard deviation associated with the catch-at-age data, 

estimated in the fitting procedure by: 
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Note that allowance is made for a “minus” group (lobsters age 8 and younger) in the 
catch-at-age contribution to the likelihood function, as well as for a “plus” group 
(lobsters aged 20 and over). 
 
2.3 Catches-at-length (from Rademeyer 2003) 
The predicted proportions-at-age (ayp ,ˆ ) are converted into proportions-at-length using 

the von Bertalanffy growth equation, assuming that the length-at-age distribution 
remains constant over time: 
  ∑=
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where laA ,  is the proportion of fish of age a that fall in the length group l (thus 

1, =∑
l

laA  for all ages a). 

The matrix A is calculated under the assumption that length-at-age is normally 
distributed about a mean given by the Von Bertalanffy equation (Brandão et al., 
2002), i.e.: 
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where 
 N*  is the normal distribution truncated at ± 3 standard deviations, and 
 aθ   is the standard deviation of length-at-age a, which is modelled to be 

proportional to the expected length-at-age a, i.e.: 
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with β a parameter estimated in the model fitting process. 
 
In this analysis, the growth curve and the extent of variability about it have been 
assumed to be constant over time.  
 
Note that since the model of the population’s dynamics is based upon a one-year time 
step, the value of β and hence the aθ ’s estimated will reflect the real variability of the 
length-at-age as well as the ‘spread’ that arises from the fact that fish in the same 
annual cohort are not all spawned at exactly the same time, and that catching takes 
place throughout the year so that there are differences in the age (in terms of fractions 
of a year) of fish allocated to the same cohort. 
 
The following term is then added to the negative log-likelihood: 

 ( ) ( ) ( )[ ]∑∑ −+=−
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where 

lyp ,  is the observed proportion (by number) in length group l in the catch in year y, 

and 

lenσ  is the standard deviation associated with the length-at-age data, which is 

estimated in the fitting procedure by: 
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Equation (27) makes the assumption that proportion-at-length data are log-normally 
distributed about their model-predicted values. The associated variance is taken to be 
inversely proportional to lyp ,  to downweight contributions from observed small 

proportions which will correspond to small predicted sample sizes. 

The lenw  weighting factor may be set at a value less than 1 to downweight the 
contribution of the catch-at-length data to the overall negative log-likelihood 
compared to that of the CPUE and survey data. The reason that this factor is 
introduced is that the f

lyp , data for a given year show evidence of strong positive 

correlation, and so are not as informative as the independence assumption underlying 
the form of equation 27 would otherwise suggest. 
 
 
Selectivity-at-length function 
Fitting to the catch-at-length data requires a selectivity-at-length function. This 
function is identical to that for the selectivity-at-age, except that parameters refer to 
length not age, i.e. for the time-invariant selectivity-at-length function 
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where 
 50l  is the length-at-50% selectivity which is estimated,  

 ∆ 5095 ll −= , which is estimated, and where 

 95l  is the length-at-95% selectivity. 
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2.4 Stock-recruitment function residuals 
The assumption that these residuals are log-normally distributed and could be serially 
correlated defines a corresponding joint prior distribution. This can be equivalently 
regarded as a penalty function added to the log-likelihood, which for fixed serial 
correlation ρ is given by: 
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where 

yyy ερρτς 2
1 1−+= −  is the recruitment residual for year y (see equation 4), 

which is estimated for years y1 to y2 if 0=ρ , or y1+1 to y2 if ,0>ρ  

yε ),0(~ 2
RN σ , 

Rσ  is the standard deviation of the log-residuals, which is input, and 
ρ  is their serial correlation coefficient, which is input. 

Note that for the Reference Case assessment, ρ  is set equal to zero, i.e. the 

recruitment residuals are assumed uncorrelated, and Rσ  is set equal to 0.4. Because of 
the absence of informative age data for a longer period, recruitment residuals are 
estimated for years 1974 to 1995 only. 
 
2.5 “Effort saturation” 
When the possibility of “effort saturation” is taken into account, the CPUE abundance 
relationship of equation 11 is modified as follows: 
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E* quantifies the extent of “effort saturation”, 

'E  is the threshold effort above which “effort saturation” sets in, and 
n* allows for flexibility in the “effort saturation” relationship. 

For this scenario, equation (17) is modified by replacing q with the qy as defined 
above.  
 
The effort saturation model includes fitting to the 1998 Effort Saturation Experiment 
data (Groeneveld et al. 1999). Considering the “full effort” exerted in Dec-Jan of the 
1998 experiment as the standard, the extent of effort reduction (λ ) and the associated 
relative change in CPUE (GLM-standardised to adjust for normal monthly trends), 
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)(λobsf , were as follows for the four area-period combinations considered in the 
experiment: 
 

Area-
period 

λ  )(λobsf  

1 0.93 1.25 
2 1.24 1.30 
3 1.15 1.04 
4 0.60 0.71 

 
When fitting directly to the data, the following penalty term needs to be added to the 

likelihood function: 
 2ln4 += Epen σ  

where 4/*)(ESSE =σ , 

where Eσ  is the standard deviation of the residuals, and 
SS(E* ) is given by equation A2 in Butterworth (2000). 
 

For the effort saturation model, parameters 'E  and n* are fixed at 2500 and 1.0 
respectively. Thus the extent of effort saturation is determined soley by E*. 
 

 
3. Further Model parameters 
 
Natural mortality : Natural mortality, aM , is assumed to be the same (M) for all age 

classes. 
 
Age-at-maturity : The proportion of lobsters of age a that are mature is approximated 
by 1=af  for a > 9 years (i.e. 0=af  for a = 0, …,9). 

 
Minimum age: Age 8 it taken to be a minus group. 
 
Maximum age: m = 20, and is taken as a plus-group. 
 
Mass-at-age: The mass w of a lobster at age a is given by: 

  ( )( )[ ]βκα 01 taelw −−
∞ −=                (33) 

where the values assumed for the growth parameters are shown in Table 1. 
 
Stock-recruitment relationship: The shape parameter, γ , is fixed to 1, 
corresponding to a Beverton-Holt form. 
 
 
4. The Bayesian approach 
The Bayesian method entails updating prior distributions for model parameters 
according to the respective likelihoods of the associated population model fits to the 
CPUE, catch-at-age and tag-recapture data, to provide posterior distribution for these 
parameters and other model quantities. Note that tag-recapture data were used for 
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earlier assessments, but discarded when it became apparent that they had little impact 
on results. 
 
In the case of an age-structured production model, the Bayesian computations require 
integration over the following priors: 

• spK  - the pristine spawning biomass in the first year (1973) 
• The “steepness” of the stock-recruit relationship (h), and 
• Natural mortality (Ma), assumed independent of age. 

 
In addition, we integrate over the two parameters defining the shape of the selectivity-
at-age curve (50a  and 95a ).  

 
Furthermore, priors for the parameters characterising the postulated “effort saturation” 
effects ( '*, EE  and n*) of equation 32 are also required. Unfortunately, due to lack of 
informative priors (e.g. as derived from the effort saturation experiment results), 
uninformative prior distributions (i.e. no external information) have had to be 
assumed. The prior for E* is uniform U[2500; 15 000]. 
 
The catchability coefficient (q) and the standard deviations associated with the CPUE 
and catch-at-age data (σ  and ageσ ) are estimated in the fitting procedure by their 

maximum likelihood values, rather than integrating over these three parameters as 
well. This is adequately accurate given reasonably large sample sizes (Walters and 
Ludwig 1994, Geromont and Butterworth 1995). 
 
Modes of posteriors, obtained by finding the maximum of the product of the 
likelihood and the priors, are then estimated rather than performing a full Bayesian 
integration, due to the time intensiveness of the latter. 
 
4.1 Priors 
The following prior distributions are assumed: 
 
lnK U[7.6, 9.9] corresponding to values for K of 1998 and 19930. 
 
h:  N(0.95, SD2) with SD=0.2, where the normal distribution is truncated at h = 1. 
 
M:  U[0.1, 0.25] 
 

50a : U[1, 19]  

 
∆  U[0, 10  [remember a95 = a50+∆ ] 
 
SR residuals yς  ),0( 2

RN σ  where Rσ =04., bounded by [-2, 2] 

 
Time varying yδ  ),0( 2

selN σ  where selσ =0.75, bounded by [-5, 5]   (used for the 

scenario where selectivity varies with time i.e. Model 2) 
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4. Projections 
 
The population is projected forwards for a ten-year period till the start of 2016. Thus 
the future catches are for 2006-2015. The equations used to update the population 
each year in the projection period are the catch equations of Popes’ approximation, 
rather than the Baranov equations used for the pre-2006 period. Appendix 1 provides 
justification for this simplification which eases computation. 
 

Projections of Numbers-at-age 
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where 
 ayN ,   is the number of lobsters of age a at the start of year y,  

 yR   is the recruitment (number of 0-year-old lobsters) at the start of year y, 

 M   denotes the natural mortality rate , 
 ayC ,   is the number of lobsters of age a caught in year y, and 

  m  is the maximum age considered (taken to be a plus-group). 

Total catch and catches-at-age 
The catch by mass in year y is given by: 
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where 
 2/1+aw  denotes the mid-year mass of fish of age a, 

 ayC ,   is the catch-at-age, i.e. the number of lobsters of age a, caught in year 

y, 
 ayS ,  is the commercial selectivity (i.e. vulnerability to fishing gear) at age a 

for year y; when 1, =ayS , the age-class a is said to be fully selected, 

and 
 yF  is the fished proportion for a fully selected age class a. 

The model estimate of the mid-year exploitable (“available”) component of biomass 
for each fleet is calculated by converting the numbers-at-age into mid-year mass-at-
age (using the mid-year individual weights) and applying natural and fishing mortality 
for half the year: 
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Table 1: Somatic growth parameters as detailed in Glazer and Groeneveld (1999). 
 

α  (w in gm) 0.0007 
β  2.846 

∞l (mm CL) 111.9 

κ  (year-1) 0.08 
t0 (years) 0.0 

 
 
 
Appendix: Baranov vs Pope’s Approximation 
 
The south coast rock lobster resource is modelled using an age-structured-production-
model (ASPM) using Baranov catch equations (Baranov 1918). These equations take 
catches into account in the form of continuous fishing mortality. Using the Baranov 
catch equations requires estimation of the annual fishing mortalities when fitting the 
model to data. This clearly greatly increases the number of estimable parameters and 
speed of computations. Whilst this is not too much of a problem for the model 
estimation procedure, the use of the Baranov catch equations when projecting into the 
future becomes more problematic, particularly when developing a feedback-type 
OMP. The authors thus use Pope’s approximation (Pope 1984) to the catch equations 
for the projection period. Pope’s approximation equations assume that the catches are 
taken as a pulse in the middle of the year. As long as fishing mortality rates are not 
very high, the differences between the Baranov and Pope’s equations will be minimal. 
In order to illustrate this, the authors compare the reference case assessment of the 
south coast rock lobster resource using both types of equations (see Table A1). As 
expected, the results are almost identical. 
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Table A1: Stock assessment results for the current Reference Case using either the 
Baranov catch equations (the current norm) or Pope’s approximation equations. Units 
of mass-related quantities (e.g. MSY) are tons. 
 
 Baranov Pope’s 

approximation 

Ksp 
8299 8301 

h  0.857 0.850 
M 0.107 0.106 

50a  10.08 10.01 

95a  12.49 12.42 

σ  0.184 0.184 

σage 0.070 0.070 
σlength - - 
-lnL CPUE -32.21 -32.18 
-lnL age -88.77 -88.76 
-lnL S-R 3.20 3.33 
-lnL(total) -118.27 -118.18 

MSY 
365 364 

MSYLexp/K 0.218 0.222 
spB05  2545 2533 
exp
05B  2261 2277 
exp
2004B / expK  0.298 0.298 
exp
2004B / exp

msyB  1.358 1.343 

spB2004/ spK  0.322 0.322 

 
 


