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Summary
A Bayesian approach is used to assess the soust i@k lobster resource based
upon a model that allows for time-varying seledjyivEstimation precision appears
good. Biomass projections and their uncertainties @mpared for four different
scenarios: two constant catch options, and simpipirecally and model-based
OMPs.

I ntroduction

This document reports future projections for thetlocoast rock lobster resource
using Bayesian methods (i.e. MCMC).

Methods

The model which is used here to explore futureqmtipns is Model 2, described in
RLWS/DECO05/ASS/7/2/3. This assessment model fitsatoh-at-age data given full
weight, assumes no effort saturation, and allowsifiee varying fishing selectivity.

Future assumptions
The following assumptions are made with respectfuinre projections of the
resource:
i) Future recruitment
Future recruitment is assumed to follow the steedewit curve with

stochastic residuals generated fronf0, o> whereo, = 04.

i) Future fishing selectivity functions
The future fishing selectivity functions allow ftime variance as for
the 1994-2003 period, in that th@, values are assumed to be

~N(0,0%) whereo, = 075

Summary statistics
The resource is projected ahead for a ten yeangd@006-2015). The following
summary statistics are produced:

i) Cave— average catch
2015
>.C,
— y=2006
ave 10
where
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C, is the total commercial catch in year y.

i) AAV — average annual catch variation
2015
Z (Cy - C:y—l) / C:y—l
AAV = y=2006
1C

iii) Final depletion (FD)
FD = B,s/K®

iv) Relative depletions (RD)
RD = B28816/ BZSEOG

MCMC procedure

Model 2 is run using an MCMC algorithm to effect tBayesian integration where

66 000 000 vectors of parameters are producedwdrede every 12000 vector is
saved for the projections (producing 5500 vectdir®m which the posterior
distributions are calculated. A 20% burn-in perieds used. Median values are
reported, along with thé"5and 9% percentiles (i.e. 90% probability intervals). \&hil
complete convergence may not have occurred, sefficconvergence has been
reached for the purposes of the illustrative natwiréhis analysis. The Appendix
shows the traces of some of the model parametersarables.

Constant Catches
Results are first produced by projecting the resewhead assuming constant catch
(CC) scenarios. The following scenarios have begtoesd:

Scenario 1: CC =382 MT (current TAC value)

Future selectivity variability, ~ N (0,0%,)
Scenario 2: CC=325MT
Future selectivity variability, ~ N (0,0%,)

The 325 MT for Scenario 2 was selected so thairtbéian final depletiorB5 ./ K ¥
was 0.40.

OMP devel opment

Future data generation
The only future data that are generated are CPUHd; ddere:

CPUE," = oB;"e” e, ~N@©00Z,
ando. . = 0141las estimated in the fit of Model 2 to the CPUEadat

cpue

Some simple OMPs are developed here. The firssisiple empirical OMP.

Empirical OMP

TAC,,, =TAC, 1+ a slope)
wheresdlope is the slope of a log-linear regression line ditte the last three CPUE
values.
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Model-based OMP
This OMP involves fitting a Schefer model to CPUktl a&atch data and then setting
the TAC as follows:

_ fa
TAC,., =ATAC, +2 B,

where
r is the Schaefer estimatedalue
B is the Schaefer estimated biomass value in yeand

y
A, [ are control parameters.

For both OMPs, it is possible to specify a maximumerannual TAC increase and
decrease. Here we have assumed both to be 20%s thet maximum TAC change
each year is constrained to be 20%. For the maaetdOMPA is set at 0.50.

Management Objectives
For this study, the provisional management objector this resource is generally to
aim for a final spawning biomass depletion relatv& of 0.40.

Results

Table 1 reports various output statistics from Medel 2 MCMC analysis. The
posterior distributions for some of the key pararetind variables are illustrated in
Figures la-f.

Table 2 reports results of summary statistics taur fdifferent future TAC setting
options (two constant catch options, an empiriceiged OMP and a model-based

OMP.) Three of the four scenarios have been tuoeitha the mediarBy,,/K® is

0.40. Figures 2a-d illustrate the spawning biom@aagectories (median plus 90%

probability intervals) for each of these future rem@os. Figures 2a and b show the
catch trajectories for the two OMP scenarios. FeguBa-c compare the catch and
resource abundance performance statistics for tHésgear projections under

alternative OMPs.

Discussion

The Bayesian posteriors (Table 1, Figures 1 arsligyest relatively well determined
parameter values for the model. Interestingly, 368 probability interval for MSY

[307, 448] MT is much narrower than the likelihoprbfile estimate of [112, 428]
MT for the RC model reported in RLWS/DECO05/ASS/3/2A probably reason is the
better fit that Model 2 achieves to the CPUE dataatimitting the possibility of

changes in selectivity over time.
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The performance statistics for the four initial O8MBre of interest in showing the
trade-off between maintaining the current catclelleand securing some increase in
abundance and hence CPUE. The empirically-based Qiditeves its target
abundance level in 2016 with only slightly betteegsion than the constant catch
equivalent, and with the cost of relatively hightemrannual catch variability.
Behaviour of the model-based OMP is poorer, butcth@rol rule used certainly has
scope for refinement.

Table 1: Bayesian estimated output statistics fad®& 2. The median is reported,
with the 3" and 9% percentiles in brackets.

Statistics Median (Band 9% percentile)
K 7756 (7378; 8254)
M 0.120 (0.106; 0.135)
a50 10.17 (9.81; 10.51)
ag9s 12.26 (10.67; 12.88)
h 0.853 (0.639; 0.974)
MSY 378 (307, 448)
B 2363 (1996; 3027)
B2 /K™ 0.305 (0.257; 0.382)
B /K o 0.282 (0.213; 0.442)
Brab/ By 1.372 (0.854; 2.530)

Table 2: Projection results from Bayesian estimatgfput statistics for Model 2. The
median is reported, with thé"sand 9%' percentiles in brackets. Values bold are
chosen tuning targets.

CC =382 CC =325 Empirical M odel-based

OMP a =10 OMP

L= 0395

Cave 382 325 319 309
(382, 382) (325, 325) (267, 385) (267, 386)

AAV 0 0.01* 0.12 0.16
(0, 0) (0.01, 0.01) (0.07, 0.16) (0.09, 0.20)

BY /K 0.34 0.40 0.40 0.40
(0.21, 0.50) (0.27, 0.56) (0.29, 0.54) (0.21, 0.59)

BY o/ B¥ 1.09 1.29 1.30 1.30
(0.71,1.57) | (0.91,1.78) | (0.93,1.79) | (0.72,1.85)

BSY, / BSY 1.15 1.83 1.84 1.91
(0.73, 3.22) (0.92, 3.75) (1.02, 3.68) (0.85, 4.00)

* This reflects the TAC change for the first year.




Figure 1a: Estimated posterior distribution Kom MT.
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Figure 1d: Estimated posterior distribution forThe bar ath = 0.65 reflects values
<0.65.
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Figure 1e: Estimated posterior distribution for MBYMT.
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Figure 2a: Spawning biomass trajectory — futurestaimt TAC = 382 MT (median
and 90% probability intervals shown).
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Figure 2b: Spawning biomass trajectory — futurestam TAC = 325 MT (median
and 90% probability intervals shown).
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Figure 2c: Spawning biomass trajectory — future Ti#@n empirically-based OMP
(median and 90% probability intervals shown).
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Figure 2d: Spawning biomass trajectory — future TAG@m model-based OMP
(median and 90% probability intervals shown).
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Figure 2a: Catch trajectory for the empirically-ba<OMP.
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Figure 2b: Catch trajectory for the model-based OMP
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Figure 3: Comparative plots between the four futsocenarios showing relative
performance for three summary statistics. Mediarsthe 90% confidence intervals
are shown.
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Appendix: MCMC traces of various model parameteis zariables.

9000

8000

7000

6000 \ \ \ \ \
0 1000 2000 3000 4000 5000 6000

0 1000 2000 3000 4000 5000 6000

ab0

0 1000 2000 3000 4000 5000 6000

ag95del

e s .
1.5 T > T T T T
0 1000 2000 3000 4000 5000 6000

11



RLWS/DECO05/ASS/7/2/4

0 1000 2000 3000 4000 5000 6000
MSY
600
500 1
400
300
200
0 1000 2000 3000 4000 5000 6000

-100

0 1000 2000 3000 4000 5000 6000

OO OO OCD oD OO

OFRP N WS U1 1 o

0 1000 2000 3000 4000 5000 6000

12



