
HWG/WKShop/2006/03/Doc 3 

 1

Initial results from using a GLMM to standardise the commercial CPUE 

data for Namibian hake, and an update of the GLM analyses to 

incorporate the extra data now available for 2004 and 2005 

Anabela Brandão and Doug S. Butterworth 

 
Marine Resource Assessment and Management Group (MARAM) 

Department of Mathematics and Applied Mathematics 
University of Cape Town 

Rondebosch, 7701, South Africa 
 
 

March 2006  
 

Abstract 

Previous analyses to standardise the commercial CPUE hake data 

have encountered problems related to the presence of a significant 

year-vessel interaction effect in the GLM analyses. These include 

the fact that the CPUE data do not represent a balanced design and 

also that the number of parameters to be estimated exceeds the 

capabilities of statistical packages available. Furthermore, the 

presence of latitude or depth interactions with year in the GLM 

analyses complicates the standardisation of the CPUE series as 

integration over area becomes necessary, and procedures are 

needed to deal with missing cells. GLMM methodology is applied to 

overcome these problems. The conventional GLM analysis to 

standardise the CPUE for hake is applied to updated data for the 

period 1992 to 2005. The impact of a grid sorter on vessels is taken 

into account. The GLM standardised CPUE index shows a 

downward trend from 1999. An upward trend is evident from 2002 

until 2004, but there is a 17% decrease from 2004 to 2005. Grid 

sorters are estimated to decrease catching efficiency by some 3%. 

GLMM standardised CPUE series show similar trends to those for 

the GLM, though the GLMM standardised series reflect a slightly 

larger decrease over the full period considered. The GLMM that 

includes all year interactions (i.e. including that with vessel) as 

random effects is selected as the best model of those considered in 

terms of both the AIC criterion and deviance analyses.   
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Introduction 

Previous GLM analyses of the commercial CPUE data for Namibian hake have shown that there is 

a significant interaction between vessels and year (Brandão et al. 2001, Brandão and Butterworth 

2001). However, inclusion of this interaction in the GLM (General Linear Model) analyses used to 

standardise the hake CPUE data is problematic in two respects. First, the number of parameters 

to be estimated in the GLM is too many for available statistical packages to handle. Secondly, the 

hake CPUE data are not representative of a balanced design as new vessels enter and old 

vessels leave the fishery, causing the number of records available by year and vessel to be very 

“spotty” with empty cells, so that the approach applied to date has had to use GRT as a surrogate 

factor for vessel. This paper investigates the use of a GLMM (General Linear Mixed Model) 

approach to take account of year-vessel interactions by treating these as a random effect. Note 

that this then explicitly accounts for differences between wetfish and freezer trawlers.  

 

The basecase GLM used to standardise the commercial hake CPUE data includes several terms 

with interactions with year (which imply changing spatio-temporal distribution patterns) (Brandão 

and Butterworth 2005). To obtain a standardised CPUE series to be used as an index of relative 

abundance when input to assessment models, the CPUE itself is assumed to be proportional to 

local density, so that integration over area (and, conventionally, averaging over month) is 

necessary to provide a quantity proportional to overall abundance. This integration/averaging is 

unnecessary in the absence of such interactions, because then the exp( yearβ ) term alone will then 

be proportional to abundance. A GLMM is therefore also investigated in which all interactions with 

year are treated as random effects, overcoming the need to integrate/average over area and 

month to obtain a standardised CPUE series for hake. 

 

This paper also applies the “conventional” GLM model as implemented in Brandão and 

Butterworth (2005), which incorporates information given by some operators that they had used a 

grid sorter on their vessels in 2003, to provide an updated index of abundance for the Namibian 

hake resource that includes the extra data now available for 2004 and 2005. However, as these 

extra data became available only very recently, there was time to perform the GLMM analyses 

only on the data used in Brandão and Butterworth (2005), for which the 2004 data are incomplete.
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Basecase GLM to standardise the CPUE 

The GLM of Brandão and Butterworth (2005), which allows for possible annual differences in hake 

areal distribution and accounts for the impact of a grid sorter, is used to standardise the 

commercial hake CPUE data. This model is given by: 

monthyearlatmonth

latdepthdepthyearlatyearGRTdepthmonthyearlat gridCPUE

××

×××

+

++++++++++=

ζκ
τθηϕωλγβαµ)ln(

      (1) 

where:  

µ  is the intercept, 

lat is a factor with 13 levels of degrees latitude (17°S–29°S), 

year is a factor with 14 levels associated with the years 1992–2005, 

month is a factor with 12 levels (January– December), 

depth is a factor with 4 levels (“200” for depths 299≤ m, “300” for 300–399 m, 

“400” for 400–499 m and “500” for 500≥  m), 

GRT is a factor with 25 levels associated with increments of 100 of the gross 

tonnage of a vessel; this commences at “0” for tonnages in the range 0–99, 

continuing to “1600” for 1600–1699, “1700” for 1700–1899 (as there were 

too few observations with tonnages in the 1800s), and “1900” for 1900–

1999, whereafter there are five further categories 2200–2299, 3000–3099, 

3100–3199, 3800–3899, 3900–3999, and 5600–5699. 

grid represents a Boolean variable with a value of “0” when no grid sorter was 

reported and “1”, when a grid sorter was reported to have been 

implemented. 

year×lat is the interaction between year and latitude, 

year×depth is the interaction between year and depth, 

depth×lat is the interaction between depth and latitude, 

month×lat is the interaction between month and latitude, 

year×month is the interaction between year and month, and 

ε is the error term assumed to be normally distributed. 

  

For this model, because of interactions with year (which imply changing spatio-temporal 

distribution patterns), the standardised CPUE series is obtained from: 
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where: 
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700== GRTωω , and 

Astratum is the surface area of the stratum defined by the degree of latitude and depth range 

concerned. 

 

Often models with interaction terms have missing cells for certain combinations of levels of factors. 

To be able to compute equation (2) for standardising the CPUE, the missing cells were replaced 

by the average of the estimable factors that “surround” the missing cell (that is, factors from the 

cells “above” and “below” and the factors from the cells on either “side” (thinking in terms of a 

map)). When there are missing cells adjacent to each other, the procedure is more complicated in 

that an order in which missing cells are filled must be specified as the results are not order-

invariant. An example of the procedure used to replace missing cells with the average of other 

cells is shown in more detail in Brandão et al. (2001).  

 

The sizes of the areas for each stratum, based on values used for the Nansen surveys, are given 

in Table 1. These strata do not correspond exactly to those chosen for the GLM. Level 200 for 

depth in the GLM includes all depths less than or equal to 299 m, because there were too few data 

points in the < 200 m range to make this a separate level for the depth factor. Similarly, the depth 

level of 500 m in the GLM includes all data points with depths greater than or equal to 500, and 

this includes a number of trawls at depths > 600 m. However, since the vast majority of fishing 

takes place between depths of 200–600 m, use of areas as listed in Table 1 would seem to reflect 

a reasonable approximation to the fished component of the resource. 

 

GLMM to standardise the CPUE 

The GLMM approach applied treats the interactions with year as random effects. Thus the model 

implemented has the form:  

εβα ++= ZX)ln(CPUE                                                 (3) 

where 

α is the unknown vector of fixed effects parameters, 

X is the design matrix for the fixed effects, 

β  is the unknown vector of random effects parameters, 

Z is the design matrix for the random effects, and 

ε is an error term assumed to be normally distributed and independent of the 

random effects. 

 

This approach assumes that both the random effects and the error term have zero mean, i.e. 

E(β) = E(ε) = 0, so that E(ln(CPUE)) = Xα. The variance-covariance matrix for the residual errors 
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(ε) is denoted by R and that for the random effects (β) by G. The analyses undertaken here 

assume that the residual errors as well as the random effects are homoscedastic and 

uncorrelated, so that both R and G are diagonal matrices given by: 

IG

IR
2

2

β

ε

σ
σ

=

=
 

where I denotes an identity matrix. Thus, in the mixed model, the variance-covariance matrix (V) 

for the response variable is given by: 

RZGZV +== T)(Cov Incr , 

where TZ  denotes the transpose of the matrix Z. 

 

The estimation of the variance components (R and G), the fixed effects (α) and the random effects 

(β) parameters in GLMM requires two steps. First the variance components are estimated by the 

method of residual maximum likelihood (REML) (Patterson and Thompson, 1971), which produces 

unbiased estimates for the variance components as it takes into account the degrees of freedom 

used in estimating the fixed effects. The REML method maximises the likelihood of a set of error 

contrasts rather than the likelihood of the whole data set. These error contrasts are linear 

combinations of the observations and have an expectation of zero1. The residual log-likelihood is 

given by: 

( ) )ln()ln(lnlnln)π2(ln))ln(;,(ln2 T1TT CPUECPUEpnCPUEL PXVXVXXGR +++−−=− −      (5) 

where ( ) 1T1T11 −−−−− −= VXXVXXVVP , n is the number of data points, p is the degrees of freedom 

used in estimating the fixed effects and the minus sign in the superscript denotes a generalised 

inverse of the matrix concerned. Once estimates of R and G ( R̂  and Ĝ ) have been obtained, 

generalised least squares estimates for the fixed effects parameters (α) can be obtained from:  

( ) )ln(ˆˆˆ 1T1T CPUE−−−= VXXVXα                                                (6) 

and predictors for the random effects parameters (β) are obtained from the best linear unbiased 

predictors (BLUPs) given by: 

 ( )αβ ˆ)ln(ˆˆˆ 1T XVZG −= − CPUE                                                  (7) 

                                                 
1 An error contrast is defined to be a linear combination )ln(CPUEK of the observations such that ( ) 0)ln(E =CPUEK , i.e. 

KX = 0. One such choice is given by ( ) T1T XXXXIK
−

−= , so that ( )α~)ln()ln( XK −= CPUECPUE , where α~  is the 

ordinary least squares estimate of α, i.e. the REML method maximises the likelihood of the ordinary least squares residuals 

( )α~)ln( X−CPUE , rather than the likelihood of )ln(CPUE . 
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GLMMs investigated 

Three GLMMs were applied to the hake CPUE data. Initially, only a year-vessel interaction was 

considered as a random effect. In this case, the vector of fixed effects parameters (α) includes all 

the parameters of equation (1) above, except that the factor GRT has been replaced with the 

individual vessels (228 in total), and the random effects parameters (β) consist of the year-vessel 

interactions. A second GLMM treated all year interactions included in the GLM as random effects 

(i.e. terms in equation (1) were taken to be fixed effects, unless they involved an interaction with 

year in which case they were taken to be a random effects. In this model the GRT factor was 

again replaced by a vessel factor. The last GLMM considered added a year-vessel interaction as a 

further random effect to those included in the GLMM just described. Computations were effected 

using the statistical package GenStat 8.1. 

 

Model Implementation  

Commercial tow information for the years 1992 to December 2005 has been used for the GLM 

analyses. A total of 161 725 data points (vessel-days of fishing) was available for the analyses. 

For the GLMM analyses, data for the years 1992 to November 2004 as available for the previous 

year’s analyses has been used. Note must be taken that, although for the previous analyses data 

were available until November 2004, the extra data made available this year for 2004 included 

more than only those for an extra month (December 2004) of fishing. For the same period 

considered last year (i.e. January to November 2004) the number of tows recorded increased from 

41 583 to 55 643. Also, because of a problem with the extraction of the data on a daily basis, tow-

by-tow data were used to calculate the data aggregated over a day used in the present analyses 

(as past GLM analyses have used data extracted on that basis). However, the catches recorded 

on a tow-by-tow basis reflect the captains’ estimates, as the landed catch data are available only 

on a daily basis. Therefore, for 2004 and 2005, the catches used are captains’ estimates, while for 

the earlier years they are the landed catches (as per past practice). 

 

In the GLMM analyses the GRT factor was replaced by a vessel factor. However, some vessels 

have two codes in the database and as information linking multiple codes used for the same 

vessel was provided only at a very late stage of these analyses, this linkage has not been taken 

into account in the data used (i.e. a single vessel is in some cases treated as two different 

vessels). Furthermore, as the most recent data for 2004 and 2005 were not made available in time 

for these GLMM analyses, the results shown should be seen as preliminary. 
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The same approach of Voges (2000) was followed to categorise variables to use as factors in the 

GLM analyses. The one exception is that the depth variable has been considered in this paper to 

be a categorical variable with levels representing (effectively) every 100 m depth range.  

 

In 2003, not all operators furnished information on whether grid sorters were used on their vessels. 

In the absence of this information, unless an operator specifically recorded that a grid sorter was 

used, it was assumed that no grid sorter was used. From January 2004 all vessels are assumed to 

use a grid sorter. 

 

Results and Discussion 

The basecase GLM model accounts for 43.5% of the total variation of hake CPUE. Table 2 

provides standardised CPUE values derived from the basecase GLM. For comparison, the 

standardised CPUE values obtained previously with commercial CPUE data as earlier provided up 

to November 2004 (Brandão and Butterworth 2005) are also shown. Figure 1 shows the index of 

abundance provided by this approach. This is compared to the index of abundance from the 

previous year’s GLM analysis. Both indices have been normalised to their mean over the first 

thirteen years. The standardised CPUE abundance indices show a downward trend since 1999. 

However since 2002 there has been an upward trend in the CPUE indices, with a 17% increase 

from 2003 to 2004, though the 2005 value is 17% down from that for 2004. The grid sorter is 

estimated to decrease catch rates by about 3%. 

 

Table 3 provides standardised CPUE values as estimated using the three different GLMMs 

considered. For comparison, the standardised CPUE values obtained from a GLM analysis for the 

same data are also shown (Brandão and Butterworth 2005).  Figure 2 shows the indices of 

abundance provided by the random effects models. These are compared to the index of 

abundance from the basecase GLM of the previous year’s analyses. All indices have been 

normalised to their mean over the thirteen years considered. All the indices show similar trends, 

though those obtained from a GLMM standardisation reflect a slightly greater decrease over the 

whole period (Table 3 and Fig. 2). 

 

Table 4 shows the deviance (given as -2*log-likelihood) and the Akaike’s Information Criteria (AIC) 

for each of the GLMMs fitted. The reduction in the deviance between two nested models is 

identical to the log-likelihood ratio statistic for testing the hypothesis of the comparison of the two 

models which is approximately 2χ  distributed with degrees of freedom corresponding to the 

difference in the number of parameters of the two models. The GLMM which treats all year 
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interactions (including a year-vessel interaction) as random effects has both the lowest AIC value 

and shows a statistically significant improvement compared to the other models. 

 

Future work  

The additional data for 2004 and 2005 used in this analysis became available only very recently. 

Hence there are several issues that need to be pursued and/or further examined in due course: 

• Obtain the data on catches for 2004 and 2005 made daily by each vessel that are 

compatible to those for other years (i.e. landed catches)  

• Increase the number of depth levels for deeper depths, as in more recent years more tows 

have taken place at these greater depths than at the beginning of the present commercial 

CPUE series.  

• Obtain the ocean area for each degree latitude for depths > 600 m. 

• Obtain clarification on which vessels have two codes in the database for previous years, 

and how these link. 

• Examine the tow-by-tow CPUE data to determine whether the present criteria for 

aggregating CPUE to provide daily data (i.e. the recorded depth and position of the 

aggregated daily tow is the information for the first tow that took place on that day) is 

appropriate.  

• Check that the random effects estimated in the GLMM models do not show systematic 

patterns (i.e. are consistent with the assumption of randomness). 
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Table 1.  The ocean area (nm2) of each stratum defined by each latitude and depth range. Note 

that a latitude indicated as, for example, 18° refers to the latitudinal range from 18° to 19°. 

Latitude (S) 

Depth (m) 

201-300 301-400 401-500 501-600  

17° 228 66 60 71 

18° 796 144 133 144 

19° 972 1042 301 306 

20° 889 947 262 297 

21° 609 863 216 252 

22° 1142 765 152 128 

23° 1074 647 230 179 

24° 866 695 218 156 

25° 1053 553 219 153 

26° 953 1444 687 145 

27° 498 853 483 168 

28° 410 154 141 158 

29° 452 345 285 126 
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Table 2.  Standardised CPUE series (each normalised to their mean over the first thirteen years 

considered) obtained by fitting a General Linear Model (GLM) to the observed CPUE data for 

Namibian hake. For both standardised CPUE series, the impact of a grid sorter has been taken 

into account. 

 

Year Previous year This year 

1992 1.713 1.711 

1993 1.859 1.856 

1994 1.404 1.393 

1995 0.910 0.915 

1996 0.789 0.782 

1997 0.866 0.863 

1998 1.114 1.126 

1999 1.129 1.134 

2000 0.782 0.779 

2001 0.611 0.617 

2002 0.490 0.495 

2003 0.615 0.615 

2004 0.717 0.717 

2005 — 0.598 
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Table 3.  Standardised CPUE series (each normalised to their mean over the thirteen years 

considered) obtained by fitting several General Linear Mixed Models (GLMM) to the observed 

CPUE data for Namibian hake. For comparison, the GLM standardised CPUE series obtained 

for the same data is also given. For all these standardised CPUE series, the impact of a grid 

sorter has been taken into account. 

 

Year GLM 

GLMM 

Year-vessel 
interaction 

only 

All year 
interactions 
(but not with 

vessel) 

All year 
interactions 
(including 

vessel) 

1992 1.713 1.849 1.876 1.902 

1993 1.859 2.030 2.043 2.248 

1994 1.404 1.412 1.408 1.346 

1995 0.910 0.871 0.963 0.892 

1996 0.789 0.752 0.740 0.700 

1997 0.866 0.841 0.846 0.853 

1998 1.114 1.093 1.042 1.060 

1999 1.129 1.116 1.052 1.041 

2000 0.782 0.756 0.758 0.738 

2001 0.611 0.571 0.595 0.582 

2002 0.490 0.475 0.473 0.465 

2003 0.615 0.575 0.542 0.546 

2004 0.717 0.661 0.662 0.627 
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Table 4.  Deviance (given as -2*log-likelihood), number of parameters and the Akaike’s 

Information Criterion (AIC) value for each of the GLMMs fitted. The reduction in the deviance 

between two nested models is identical to the log-likelihood ratio statistic for testing the 

hypothesis of a statistically significant improvement between two models. The difference in the 

AIC between the basecase GLM and the different GLMMs fitted (∆AIC) is also shown. The 

model with the lowest AIC and the model with the lowest statistically significant deviance is 

shown italicised in bold.  

 

Model Deviance 
Number of 
parameters 

AIC ∆AIC 

GLM 45 920 542 47 004  

GLMM: Year-

vessel 

interaction only 

25 751 748 27 247 19 757 

GLMM: All year 

interactions 

(but not with 

vessel) 

36 625 440 37 505 9 499 

GLMM: All year 

interactions 

(including 

vessel) 

25 107 441 25 989 21 015 
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Figure 1.  Index of abundance (normalised to its mean over the first thirteen year period) for 
Namibian hake obtained from fitting the GLM model. For comparison the standardised CPUE 
series (also normalised to its mean over the thirteen year period) obtained when the model 
was fitted to the CPUE data as previously available to November 2004 is also shown, though 
differences are indistinguishable at this scale of plot. 

 

 
Figure 2.  Index of abundance (normalised to its mean over the thirteen year period) for Namibian 

hake obtained from fitting the different GLMMs. For comparison the standardised CPUE series 
(also normalised to its mean over the thirteen year period) obtained when the basecase GLM 
was fitted to the CPUE data is also shown. 
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