

Further Hake Projections under four Candidate OMPs

R.A. Rademeyer and D.S. Butterworth

MARAM (Marine Resource Assessment and Management Group) Department of Mathematics and Applied Mathematics University of Cape Town, Rondebosch 7701, South Africa

October 2006

Introduction

This paper provides performance statistics for a variety of candidates OMPs applied to the New Reference Set trials and four robustness tests. These OMPs include OMP1, OMP5 and OMP7 for which some results were previously reported in WG/09/06/D:H:38, together with one new candidate (OMP11). Each of these four candidate OMPs has been tuned to three different **median** recovery level for *M. paradoxus* (15%, 20% and 25%) of *K* after 20 years.

Because of time constraints, results four only four of the six robustness tests presented in WG/09/06/D:H:39 are presented here. Robustness tests A1b (discards in the past) and "Decr in K" (decrease in the carrying capacity for *M. capensis* from 1992 onwards) have been omitted as they showed the lesser differences to the Reference Set results, or were less pertinent to risk considerations.

Results

The specifications and control parameter values for each of candidate OMPs and their tunings are given in Table 1.

Key comparative results for the variety of OMPs considered may be found in Table 2 and Fig. 1. Medians of projections under the different candidates for a comparable **median** 20% recovery tuning for *M. paradoxus* are compared in Fig. 2 for the Reference Set. Figs 3 and 4 compare median trajectories for the three recovery tunings for *M. paradoxus* for an application of OMP1 and OMP7 respectively, for the Reference Set.

Table 3 gives the probability of projected changes in TAC over five year intervals for each of the candidate OMPs, for the Reference Set.

Tables 4-7 report performance statistics for each of the robustness trials in turn for all the candidate OMPs, and these results are presented graphically in Figs 5-8.

Table 8 gives the probability of projected changes in TAC over five year intervals for an application of OMP1_20% (i.e. **median** recovery to 20% of *K* for *M*. *paradoxus* after 20 years) to the Reference Set and the four robustness tests.

Full graphical sets of projections for each of the candidates for the Reference Set are reproduced in Appendix A. Similar plots are also shown for an application of OMP1_20% to each of the four robustness tests.

Case		Fixed phase down	р	\neg_{l}	72	3	Yr_join	Target incr para	Target incr cap	Y	Max incr	Max decr1	Max decr2	Limit1	Limit2
	15%	-	6	0.50	2	1.1	10	0.0183	0	10	10%	10%	-	-	-
OMP1	20%	-	6	0.50	2	1.1	10	0.0240	0	15	10%	10%	-	-	-
	25%	-	6	0.50	2	1.1	10	0.0303	0	20	10%	10%	-	-	-
	15%	-	6	0.50	3	1.1	10	0.0090	0	10	10%	10%	20%	0.8	0.6
OMP5	20%	-	6	0.50	3	1.1	10	0.0176	0	15	10%	10%	20%	0.8	0.6
	25%	-	6	0.50	3	1.1	10	0.0243	0	20	10%	10%	20%	0.8	0.6
	15%	3x7.5%	6	0.50	4	1.1	10	0.0080	0	10	5%	5%	15%	0.8	0.6
OMP7	20%	3x7.5%	6	0.50	4	1.1	10	0.0190	0	15	5%	5%	15%	0.8	0.6
	25%	3x7.5%	6	0.50	4	1.1	10	0.0298	0	20	5%	5%	15%	0.8	0.6
	15%	1x20'000t	6	0.50	3	1.1	10	0.0065	0	10	10%	10%	-	-	-
OMP11	20%	1x20'000t	6	0.50	3	1.1	10	0.0163	0	15	10%	10%	-	-	_
	25%	1x20'000t	6	0.50	3	1.1	10	0.0238	0	20	10%	10%	-	-	-

Table 1: Tuning parameters for each candidate OMP presented in this paper. δ_1 , δ_2 and δ_3 are the rate parameters of the year-dependent tuning parameter, λ_y .

Note: "Max decr1", "Max decr2", "Limit1" and "Limit2" correspond to D_1 , D_2 , L_1 and L_2 respectively from equation 4 in document WG/09/06/D:H:33. The shape of the function of the maximum annual decrease in TAC as a function of relative CPUE is shown below

Table 2: Summary of performance statistics for the full combination of four candidate OMPs and three median recovery tuning for *M. paradoxus*, for the **Reference Set**. For each statistic, the median and 90% PIs are shown.

			OMP1			OMP5			OMP7			OMP11	
		15%	20%	25%	15%	20%	25%	15%	20%	25%	15%	20%	25%
		129.52	125.19	120.78	129.85	125.77	122.11	128.09	123.89	119.63	130.10	126.34	121.81
	avTAC	113.22	108.82	104.80	109.76	106.15	102.28	102.14	98.43	94.83	114.59	110.26	105.66
		144.51	139.43	134.32	145.18	140.55	136.02	143.55	139.80	134.61	146.34	141.28	135.21
		5.10	5.03	4.92	5.37	5.29	5.21	4.09	4.10	4.04	5.47	5.31	5.29
	AAV	3.35	3.45	3.31	3.54	3.76	3.49	3.19	3.23	3.12	3.87	4.01	3.65
		7.01	6.85	6.73	7.55	7.44	7.50	5.85	5.95	6.11	7.19	7.12	7.07
led	CPUE and	1.53	1.57	1.60	1.55	1.60	1.64	1.47	1.50	1.53	1.55	1.61	1.67
ıbir	CPUE 2005	1.24	1.26	1.30	1.25	1.30	1.34	1.17	1.21	1.24	1.29	1.33	1.36
uo	01 0 - 2003	1.91	1.95	1.99	1.99	2.05	2.10	1.87	1.91	1.94	1.95	1.99	2.05
es c		135.00	135.00	135.00	134.97	134.97	134.97	138.75	138.75	138.75	130.00	130.00	130.00
ecié	C_{2007}	-	-	-	-	-	-	-	-	-	-	-	-
Spe		-	-	-	-	-	-	-	-	-	-	-	-
		121.50	121.50	121.50	121.47	121.47	121.47	128.34	128.34	128.34	117.00	117.00	117.00
	C_{2008}	121.50	121.50	121.50	118.94	118.54	118.54	128.34	128.34	128.34	117.00	117.00	117.00
		130.86	129.99	128.88	131.47	129.11	127.75	128.34	128.34	128.34	127.39	124.82	123.29
	C 2009	112.31	111.02	109.88	109.33	109.33	109.21	118.72	118.72	118.72	106.61	105.30	105.30
		109.35	109.35	109.35	102.64	102.20	102.20	118.72	118.72	118.72	105.30	105.30	105.30
		128.66	127.86	126.98	128.22	126.84	125.88	118.72	118.72	118.72	125.22	122.50	121.47
t e		0.150	0.200	0.250	0.150	0.200	0.250	0.150	0.200	0.250	0.150	0.200	0.250
mx	B 2027/K	0.069	0.121	0.167	0.059	0.109	0.165	0.061	0.111	0.167	0.050	0.111	0.160
adc		0.259	0.313	0.372	0.283	0.334	0.389	0.353	0.396	0.420	0.250	0.305	0.364
par		2.13	2.88	3.79	2.11	2.91	3.65	2.18	3.05	3.82	2.07	2.86	3.65
И. І	B_{2027}/B_{2007}	1.21	1.96	2.54	1.07	1.81	2.43	1.19	1.82	2.42	0.98	1.88	2.51
V		3.82	4.86	5.98	4.05	5.03	6.16	5.90	6.68	7.87	3.76	4.79	6.02
		0.67	0.70	0.72	0.67	0.70	0.72	0.69	0.72	0.73	0.67	0.70	0.72
sis	B_{2027}/K	0.56	0.59	0.61	0.55	0.58	0.60	0.56	0.59	0.61	0.55	0.58	0.61
nəc		0.82	0.85	0.87	0.82	0.84	0.87	0.84	0.86	0.88	0.81	0.84	0.87
cat		1.42	1.49	1.54	1.43	1.49	1.54	1.45	1.51	1.56	1.42	1.48	1.53
М.	B_{2027}/B_{2007}	1.17	1.22	1.26	1.16	1.21	1.26	1.20	1.24	1.29	1.16	1.20	1.25
		1.70	1.78	1.84	1.72	1.79	1.84	1.75	1.81	1.86	1.70	1.77	1.83

Table 3: Probability of projected TAC a) increase, and decrease b) between 0 and 5%, c) between 5% and 10%, d) between 10% and 15% and e) greater than 15% over five year intervals, for an application of each combination of candidate OMPs and recovery level for the Reference Set. Note that values necessarily zero in terms of the OMP's TAC change rules are shown in bold.

			I	Probability that the	he percentage	change in TAC i	s:
			. 0	between 0	between -5	between -10	. 150/
			>0	and -5%	and -10%	and -15%	< -15%
		2007-2011	0.23	0.15	0.61	0	0
	150/	2012-2016	0.65	0.23	0.12	0	0
	13%	2017-2021	0.71	0.20	0.09	0	0
		2022-2026	0.57	0.26	0.17	0	0
		2007-2011	0.22	0.15	0.63	0	0
OMP1	2004	2012-2016	0.64	0.24	0.13	0	0
	2070	2017-2021	0.60	0.29	0.12	0	0
		2022-2026	0.66	0.23	0.11	0	0
		2007-2011	0.20	0.14	0.66	0	0
	25%	2012-2016	0.62	0.25	0.13	0	0
	2570	2017-2021	0.59	0.29	0.11	0	0
		2022-2026	0.53	0.30	0.17	0	0
		2007-2011	0.26	0.11	0.25	0.35	0.02
	15%	2012-2016	0.71	0.18	0.10	0.00	0.01
	1570	2017-2021	0.69	0.21	0.09	0.00	0.01
		2022-2026	0.55	0.27	0.16	0.02	0.00
		2007-2011	0.24	0.10	0.27	0.37	0.03
OMD5	20%	2012-2016	0.70	0.18	0.11	0.00	0.01
OWI J	2070	2017-2021	0.64	0.26	0.10	0.00	0.00
		2022-2026	0.64	0.24	0.12	0	0
		2007-2011	0.23	0.09	0.27	0.39	0.03
	25%	2012-2016	0.68	0.19	0.12	0.00	0.01
	2570	2017-2021	0.64	0.25	0.10	0.00	0.00
		2022-2026	0.54	0.29	0.17	0	0
		2007-2011	0.21	0.11	0.65	0.03	0
	15%	2012-2016	0.64	0.27	0.07	0.02	0
	1570	2017-2021	0.71	0.27	0.02	0.00	0
		2022-2026	0.64	0.35	0.01	0.00	0
		2007-2011	0.19	0.12	0.66	0.04	0
OMP7	20%	2012-2016	0.61	0.28	0.08	0.03	0
0.011 /	2070	2017-2021	0.65	0.33	0.01	0.00	0
		2022-2026	0.71	0.28	0.00	0	0
		2007-2011	0.16	0.13	0.67	0.04	0
	25%	2012-2016	0.55	0.33	0.08	0.04	0
	2070	2017-2021	0.63	0.36	0.01	0.00	0
		2022-2026	0.58	0.43	0	0	0
		2007-2011	0.29	0.11	0.40	0.20*	0
	15%	2012-2016	0.76	0.17	0.08	0	0
	1070	2017-2021	0.66	0.24	0.11	0	0
		2022-2026	0.53	0.26	0.21	0	0
		2007-2011	0.27	0.10	0.43	0.20*	0
OMP11	20%	2012-2016	0.74	0.17	0.09	0	0
	, ,	2017-2021	0.62	0.27	0.11	0	0
		2022-2026	0.62	0.25	0.13	0	0
		2007-2011	0.24	0.09	0.47	0.20*	0
	25%	2012-2016	0.73	0.17	0.10	0	0
		2017-2021	0.62	0.27	0.11	0	0
		2022-2026	0.53	0.30	0.18	0	0

* This reflects the 20 000 ton decrease for this OMP for 2007; thereafter the rules for this OMP do not allow TAC changes to exceed 10%.

Table 4: Summary of performance statistics for the full combination of four candidate OMPs and three median recovery tuning for *M. paradoxus*, for the **SR1 robustness test**. For each statistic, the median and 90% PIs are shown. Results integrate over **only four** of the 24 Reference Set scenarios.

			OMP1			OMP5			OMP7			OMP11	
		15%	20%	25%	15%	20%	25%	15%	20%	25%	15%	20%	25%
		140.69	136.98	132.02	141.04	137.87	134.03	137.37	132.81	128.89	141.21	137.86	133.13
	avTAC	126.56	121.78	117.13	126.26	123.39	119.29	125.04	120.65	117.17	127.10	123.68	118.44
		155.52	150.40	144.69	155.91	152.04	146.86	150.29	145.85	141.40	155.79	151.24	146.05
		5.07	5.07	5.01	5.25	5.29	5.16	4.15	4.12	4.10	5.39	5.38	5.29
	AAV	3.31	3.46	3.42	3.50	3.59	3.59	3.38	3.30	3.32	3.72	3.82	3.73
		6.57	6.66	6.40	6.93	6.89	6.51	4.74	4.71	4.66	6.86	6.74	6.49
led	CPUE 2014	1.46	1.51	1.55	1.43	1.50	1.54	1.66	1.69	1.71	1.48	1.57	1.61
bin	CPU/E_{2016}	1.21	1.26	1.31	1.15	1.23	1.28	1.29	1.32	1.33	1.21	1.30	1.35
om	01 01 2005	1.85	1.89	1.95	1.85	1.90	1.96	2.17	2.19	2.20	1.88	1.98	2.03
ss c		135.00	135.00	135.00	134.97	134.97	134.97	138.75	138.75	138.75	130.00	130.00	130.00
ecie	C_{2007}	-	-	-	-	-	-	-	-	-	-	-	-
Spe		-	-	-	-	-	-	-	-	-	-	-	-
		128.68	127.57	126.35	128.24	125.85	123.99	128.34	128.34	128.34	124.29	121.66	119.66
	C_{2008}	121.50	121.50	121.50	120.81	120.74	120.67	128.34	128.34	128.34	117.00	117.00	117.00
		135.49	135.11	134.69	136.08	135.51	135.06	128.34	128.34	128.34	131.25	130.63	130.15
	C_{2009}	128.41	126.88	125.21	127.85	125.08	123.92	118.72	118.72	118.72	124.31	120.75	119.68
		113.38	111.59	109.76	109.82	109.33	109.33	118.72	118.72	118.72	106.99	105.30	105.30
		141.29	140.46	139.55	142.60	141.35	140.38	118.72	118.72	118.72	137.82	136.45	135.41
		0.154	0.211	0.258	0.139	0.198	0.242	0.195	0.238	0.282	0.143	0.208	0.258
snx	B 2027/K	0.074	0.121	0.170	0.069	0.113	0.152	0.106	0.151	0.187	0.065	0.111	0.160
opi		0.247	0.303	0.365	0.240	0.294	0.354	0.321	0.367	0.413	0.253	0.310	0.362
arc		2.03	2.81	3.46	1.85	2.58	3.28	2.47	3.21	3.79	1.96	2.72	3.40
1. p	B 2027/B 2007	1.21	2.03	2.56	1.05	1.78	2.33	1.59	2.04	2.55	0.99	1.79	2.43
V		3.36	4.45	5.29	3.24	4.11	4.94	4.54	5.47	6.19	3.45	4.35	5.23
		0.63	0.67	0.69	0.62	0.66	0.68	0.65	0.68	0.70	0.62	0.66	0.68
iis	B_{2027}/K	0.53	0.56	0.59	0.52	0.55	0.58	0.55	0.57	0.59	0.52	0.56	0.58
suə		0.79	0.82	0.84	0.78	0.81	0.84	0.82	0.84	0.87	0.78	0.81	0.84
cap		1.41	1.48	1.54	1.40	1.47	1.52	1.45	1.50	1.56	1.41	1.47	1.53
И.	B_{2027}/B_{2007}	1.18	1.24	1.28	1.16	1.22	1.27	1.19	1.23	1.27	1.17	1.22	1.27
		1.66	1.78	1.84	1.63	1.75	1.81	1.77	1.85	1.92	1.64	1.75	1.82

Table 5: Summary of performance statistics for the full combination of four candidate OMPs and three median recovery tuning for *M. paradoxus*, for the **robustness test with a Ricker stock-recruitment curve** (A7b). For each statistic, the median and 90% PIs are shown. Results integrate over **only four** of the 24 Reference Set scenarios.

			OMP1			OMP5			OMP7			OMP11	
		15%	20%	25%	15%	20%	25%	15%	20%	25%	15%	20%	25%
		134.68	128.77	122.98	135.95	130.56	124.34	133.19	127.94	122.92	136.19	129.04	123.24
	avTAC	116.57	111.53	107.27	117.02	112.83	108.70	111.45	107.83	105.42	117.45	112.63	108.03
		150.77	143.31	138.06	151.13	144.38	139.51	147.62	140.92	135.38	151.19	144.31	138.23
		4.66	4.68	4.54	4.84	4.86	4.76	3.95	3.84	3.81	4.99	5.02	4.96
	AAV	3.39	3.24	3.21	3.45	3.39	3.42	3.17	3.07	2.99	3.59	3.71	3.58
ned		6.28	6.18	6.01	6.39	6.49	6.42	4.95	4.83	4.73	6.44	6.55	6.41
	CPUE	1.42	1.46	1.50	1.41	1.47	1.51	1.43	1.45	1.48	1.43	1.50	1.55
ıbir	$CPUE_{2016}$	1.25	1.28	1.32	1.22	1.27	1.31	1.15	1.18	1.21	1.26	1.32	1.35
onc	01 0 - 2003	1.69	1.73	1.76	1.68	1.73	1.77	1.68	1.73	1.75	1.72	1.77	1.81
es c		135.00	135.00	135.00	134.97	134.97	134.97	138.75	138.75	138.75	130.00	130.00	130.00
ecié	C_{2007}	-	-	-	-	-	-	-	-	-	-	-	-
Sp		-	-	-	-	-	-	-	-	-	-	-	-
		123.58	122.49	121.51	121.48	121.47	121.47	128.34	128.34	128.34	117.11	117.00	117.00
	C_{2008}	121.50	121.50	121.50	120.26	120.26	120.25	128.34	128.34	128.34	117.00	117.00	117.00
		133.02	132.65	132.23	132.96	132.40	131.95	128.34	128.34	128.34	128.25	127.63	127.15
	C 2009	117.06	115.58	113.97	114.77	112.41	110.76	118.72	118.72	118.72	112.41	109.09	107.17
		109.35	109.35	109.35	107.72	106.75	106.75	118.72	118.72	118.72	105.30	105.30	105.30
		134.24	133.47	132.62	135.46	134.29	133.39	118.72	118.72	118.72	130.93	129.65	128.67
F		0.362	0.455	0.537	0.344	0.440	0.519	0.373	0.455	0.531	0.351	0.452	0.538
snx	B 2027/K	0.249	0.335	0.429	0.209	0.323	0.406	0.219	0.297	0.383	0.221	0.342	0.422
opr		0.524	0.630	0.728	0.516	0.608	0.704	0.571	0.642	0.712	0.510	0.611	0.704
ara		2.25	2.84	3.33	2.12	2.71	3.17	2.20	2.64	3.14	2.20	2.77	3.24
4. F	B_{2027}/B_{2007}	1.47	2.01	2.46	1.29	1.90	2.30	1.37	1.92	2.41	1.36	1.92	2.38
V		2.95	3.51	3.99	2.88	3.42	3.87	3.43	3.69	4.04	3.01	3.48	3.95
		0.76	0.79	0.81	0.76	0.78	0.80	0.78	0.80	0.82	0.76	0.77	0.80
sis	B 2027/K	0.68	0.70	0.73	0.68	0.70	0.72	0.69	0.71	0.74	0.68	0.70	0.72
nəo.		0.90	0.94	0.96	0.90	0.93	0.95	0.90	0.93	0.95	0.90	0.92	0.95
cap		1.14	1.17	1.21	1.13	1.16	1.20	1.15	1.19	1.22	1.12	1.16	1.19
M.	B 2027/B 2007	1.00	1.05	1.08	1.00	1.04	1.07	1.02	1.05	1.09	1.00	1.03	1.07
		1.36	1.41	1.45	1.36	1.39	1.43	1.36	1.40	1.44	1.35	1.39	1.43

Table 6: Summary of performance statistics for the full combination of four candidate OMPs and three median recovery tuning for *M. paradoxus*, for the **robustness test with recruitment variability** σ_R =0.4 in the past and in the projections (B7). For each statistic, the median and 90% PIs are shown. Results integrate over only four of the 24 Reference Set scenarios.

			OMP1			OMP5			OMP7			OMP11	
		15%	20%	25%	15%	20%	25%	15%	20%	25%	15%	20%	25%
		127.92	123.27	118.94	127.68	123.46	118.43	124.95	121.16	116.60	129.02	123.83	119.14
	avTAC	101.11	97.24	94.34	96.33	92.60	89.43	83.39	80.22	78.40	101.52	97.56	94.73
		148.94	143.13	138.20	148.90	142.80	137.62	145.44	141.47	136.90	148.60	143.26	137.87
		5.63	5.65	5.49	5.97	6.01	5.90	4.35	4.30	4.24	5.88	5.95	5.77
	AAV	3.97	4.18	3.86	4.25	4.27	4.12	3.45	3.43	3.29	4.54	4.39	4.38
ned		7.73	7.65	7.47	9.00	9.09	9.15	6.87	7.10	7.22	7.73	7.83	7.57
	CPUE 2016/ CPUE 2005	1.67	1.71	1.75	1.72	1.79	1.84	1.62	1.67	1.69	1.71	1.80	1.83
bin		1.14	1.16	1.18	1.25	1.29	1.34	1.08	1.10	1.11	1.20	1.28	1.29
om	CI CE 2005	2.38	2.41	2.44	2.57	2.64	2.69	2.41	2.47	2.53	2.47	2.50	2.53
ss c		135.00	135.00	135.00	134.97	134.97	134.97	138.75	138.75	138.75	130.00	130.00	130.00
ecie	C_{2007}	-	-	-	-	-	-	-	-	-	-	-	-
Spe		-	-	-	-	-	-	-	-	-	-	-	-
		121.50	121.50	121.50	121.47	121.47	121.47	128.34	128.34	128.34	117.00	117.00	117.00
	C_{2008}	121.50	121.50	121.50	119.61	119.46	119.36	128.34	128.34	128.34	117.00	117.00	117.00
		129.64	128.53	127.30	129.84	127.44	125.57	128.34	128.34	128.34	125.82	123.23	121.20
	C 2009	110.94	109.99	109.35	109.12	108.55	108.00	118.72	118.72	118.72	105.30	105.30	105.30
		109.35	109.35	109.35	97.17	96.80	96.80	118.72	118.72	118.72	105.30	105.30	105.30
		126.53	124.48	122.23	127.11	122.72	119.36	118.72	118.72	118.72	124.27	119.50	115.92
F		0.155	0.214	0.259	0.174	0.230	0.273	0.188	0.239	0.275	0.162	0.208	0.255
snx	B_{2027}/K	0.051	0.095	0.143	0.054	0.105	0.146	0.067	0.115	0.159	0.048	0.088	0.134
opt		0.325	0.377	0.425	0.374	0.443	0.470	0.472	0.514	0.543	0.331	0.391	0.434
ara		2.51	3.36	4.23	2.64	3.42	4.05	2.80	3.60	4.30	2.48	3.21	4.10
4. F	B_{2027}/B_{2007}	1.06	1.66	2.31	1.12	1.85	2.51	1.18	1.74	2.22	0.94	1.61	2.43
V		5.29	6.29	7.28	6.31	7.16	8.20	8.54	9.31	10.04	5.10	6.31	7.07
		0.59	0.62	0.65	0.60	0.63	0.65	0.61	0.64	0.67	0.59	0.62	0.64
sis	B_{2027}/K	0.46	0.49	0.52	0.47	0.50	0.52	0.46	0.48	0.50	0.47	0.49	0.52
uə.		0.84	0.88	0.90	0.84	0.87	0.90	0.88	0.90	0.92	0.84	0.87	0.90
cap		1.51	1.59	1.66	1.60	1.65	1.71	1.62	1.67	1.71	1.51	1.58	1.65
M.	B_{2027}/B_{2007}	1.21	1.28	1.32	1.21	1.30	1.35	1.22	1.28	1.33	1.19	1.27	1.33
		1.95	2.07	2.17	2.02	2.09	2.16	2.14	2.20	2.28	1.98	2.05	2.15

Table 7: Summary of performance statistics for the full combination of four candidate OMPs and three median recovery tuning for *M. paradoxus*, for the **robustness test with a 30% decrease in** *K* **in the future** (**B8**). For each statistic, the median and 90% PIs are shown. Results integrate over all 24 Reference Set scenarios. The ratios associated with the estimates of K^{sp} are for the present K^{sp} , i.e. before the future decrease in carrying capacity.

			OMP1			OMP5			OMP7			OMP11	
		15%	20%	25%	15%	20%	25%	15%	20%	25%	15%	20%	25%
		106.33	103.42	100.98	105.68	103.73	100.91	106.12	104.61	102.10	107.05	104.72	101.76
	avTAC	95.68	93.29	90.16	93.22	89.54	86.41	88.89	87.82	85.25	97.09	94.81	91.18
		119.68	116.30	112.89	119.89	116.49	113.63	120.43	118.05	115.96	120.35	117.25	113.88
		5.30	5.30	5.30	5.65	5.62	5.53	4.76	4.52	4.50	5.65	5.59	5.51
	AAV	3.68	3.66	3.83	3.97	3.98	4.01	3.52	3.36	3.48	4.08	4.14	4.05
		7.16	7.08	6.80	8.80	8.38	7.90	7.62	7.10	6.73	7.83	7.39	7.08
ned	CPUE 2016/ CPUE 2005	1.24	1.27	1.31	1.26	1.31	1.34	1.19	1.23	1.27	1.26	1.32	1.36
bin		1.03	1.05	1.08	1.02	1.08	1.11	0.95	0.99	1.02	1.04	1.08	1.12
om	01 0 2 2005	1.53	1.57	1.61	1.57	1.64	1.65	1.48	1.52	1.56	1.56	1.61	1.65
ss c		135.00	135.00	135.00	134.97	134.97	134.97	138.75	138.75	138.75	130.00	130.00	130.00
ecie	C_{2007}	-	-	-	-	-	-	-	-	-	-	-	-
Spe		-	-	-	-	-	-	-	-	-	-	-	-
		121.50	121.50	121.50	121.47	121.47	121.47	128.34	128.34	128.34	117.00	117.00	117.00
	C_{2008}	121.50	121.50	121.50	118.94	118.54	118.54	128.34	128.34	128.34	117.00	117.00	117.00
		130.86	129.99	128.88	131.47	129.11	127.75	128.34	128.34	128.34	127.39	124.82	123.29
	C 2009	112.31	111.02	109.88	109.33	109.33	109.21	118.72	118.72	118.72	106.61	105.30	105.30
		109.35	109.35	109.35	102.64	102.20	102.20	118.72	118.72	118.72	105.30	105.30	105.30
		128.66	127.86	126.98	128.22	126.84	125.88	118.72	118.72	118.72	125.22	122.50	121.47
		0.100	0.138	0.172	0.103	0.138	0.171	0.080	0.111	0.144	0.098	0.133	0.169
snx	B_{2027}/K	0.035	0.073	0.104	0.040	0.072	0.106	0.014	0.040	0.071	0.019	0.066	0.097
opi		0.175	0.215	0.255	0.182	0.222	0.260	0.181	0.217	0.253	0.171	0.218	0.258
ara		1.49	1.98	2.55	1.54	2.05	2.54	1.19	1.71	2.13	1.46	1.94	2.51
4. F	B_{2027}/B_{2007}	0.67	1.23	1.70	0.67	1.30	1.74	0.29	0.78	1.26	0.36	1.11	1.71
V		2.48	3.37	4.11	2.70	3.42	4.18	2.63	3.29	4.15	2.42	3.21	4.01
		0.48	0.50	0.52	0.48	0.50	0.52	0.47	0.49	0.51	0.47	0.50	0.51
sis	B 2027/K	0.39	0.42	0.44	0.40	0.42	0.44	0.38	0.41	0.42	0.38	0.42	0.43
nə		0.59	0.61	0.63	0.59	0.61	0.62	0.59	0.60	0.62	0.59	0.61	0.62
cap		1.02	1.08	1.11	1.03	1.07	1.11	1.01	1.05	1.09	1.01	1.07	1.10
N.	B 2027/B 2007	0.82	0.85	0.88	0.84	0.87	0.90	0.82	0.85	0.89	0.81	0.85	0.88
,		1.22	1.27	1.31	1.23	1.27	1.31	1.22	1.27	1.30	1.22	1.27	1.30

Table 8: Probability of projected TAC a) increase, and decrease b) between 0 and 5%, c) between 5% and 10%, d) between 10% and 15% and e) greater than 15% over five year intervals, for an application of **OMP1_20%** to the **Reference Set and four robustness tests**. Values which are necessarily zero in terms of the OMP's TAC change rules are shown in bold.

			F	Probability that th	he percentage of	change in TAC i	s:
			>0	between 0 and -5%	between -5 and -10%	between -10 and -15%	< -15%
		2007-2011	0.21	0.14	0.64	0	0
	DC	2012-2016	0.65	0.22	0.13	0	0
	КЭ	2017-2021	0.62	0.30	0.08	0	0
		2022-2026	0.67	0.21	0.12	0	0
		2007-2011	0.51	0.14	0.35	0	0
ly)	CD 1	2012-2016	0.52	0.23	0.25	0	0
uo	SKI	2017-2021	0.29	0.39	0.32	0	0
ios		2022-2026	0.69	0.20	0.11	0	0
nar		2007-2011	0.32	0.13	0.55	0	0
sce	Distran	2012-2016	0.61	0.26	0.13	0	0
4)	Ricker	2017-2021	0.54	0.37	0.09	0	0
		2022-2026	0.70	0.20	0.11	0	0
		2007-2011	0.17	0.13	0.70	0	0
	-0.4	2012-2016	0.62	0.22	0.16	0	0
	R = 0.4	2017-2021	0.61	0.27	0.12	0	0
		2022-2026	0.66	0.22	0.13	0	0
		2007-2011	0.22	0.15	0.63	0	0
	DC	2012-2016	0.64	0.24	0.13	0	0
ios	кз	2017-2021	0.60	0.29	0.12	0	0
nar		2022-2026	0.66	0.23	0.11	0	0
sce		2007-2011	0.28	0.11	0.61	0	0
24	Decr in K	2012-2016	0.58	0.23	0.19	0	0
\odot	in future	2017-2021	0.24	0.30	0.47	0	0
		2022-2026	0.54	0.26	0.20	0	0

Fig. 1: Graphical summary of performance statistics for the full combination of four candidate OMPs (OMP1, OMP5, OMP7 and OMP11 from left to right) and three **median** recovery tunings (15%, 20% and 25% of *K* from left to right) for *M. paradoxus* for the **Reference Set**. Each panel shows medians together with 90% PIs.

Fig. 2: Median trajectories of resource abundance, CPUE, catch and variation in catch for an application of **OMP1**, **OMP5**, **OMP7** and **OMP11** for a comparable **median 20%** of *K* recovery tuning for *M*. *paradoxus* for the **Reference Set**. Note units for species combined CPUE are those of the exploitable biomass to which it corresponds. Pre-2007, the average spawning biomass and species combined CPUE trajectories of the Reference Set and the actual species disaggregated CPUE and total catch are also shown.

Fig. 3: Median trajectories of resource abundance, CPUE, catch and variation in catch for an application of **OMP1** for three median recovery tunings for *M. paradoxus* for the **Reference Set**. Note units for species combined CPUE are those of the exploitable biomass to which it corresponds. Pre-2007, the average spawning biomass and species combined CPUE trajectories of the Reference Set and the actual species disaggregated CPUE and total catch are also shown.

Fig. 4: Median trajectories of resource abundance, CPUE, catch and variation in catch for an application of **OMP7** for three median recovery tunings for *M. paradoxus* for the **Reference Set**. Note units for species combined CPUE are those of the exploitable biomass to which it corresponds. Pre-2007, the average spawning biomass and species combined CPUE trajectories of the Reference Set and the actual species disaggregated CPUE and total catch are also shown.

Fig. 5: Graphical summary of performance statistics for the full combination of four candidate OMPs and three median recovery tunings for *M. paradoxus* for the SR1 robustness test. Each panel shows medians together with 90% PIs. Results integrate over only four of the 24 Reference Set scenarios. The ordering of the OMPs and tunings is as for Fig. 1.

Fig. 6: Graphical summary of performance statistics for the full combination of four candidate OMPs and three median recovery tunings for *M. paradoxus* for the robustness test with a Ricker stock-recruitment curve (A7b). Each panel shows medians together with 90% PIs. Results integrate over only four of the 24 Reference Set scenarios. The ordering of the OMPs and tunings is as for Fig. 1.

Fig. 7: Graphical summary of performance statistics for the full combination of four candidate OMPs and three median recovery tunings for *M. paradoxus* for the robustness test with σ_R =0.4 in the past and in the projections (B7). Each panel shows medians together with 90% PIs. Results integrate over only four of the 24 Reference Set scenarios. The ordering of the OMPs and tunings is as for Fig. 1.

Fig. 8: Graphical summary of performance statistics for the full combination of four candidate OMPs and three median recovery tunings for *M. paradoxus* for the robustness test with a 30% decrease in *K* in the future (B8). Each panel shows medians together with 90% PIs. Results integrate over all 24 Reference Set scenarios. The ratios associated with the estimates of K^{sp} are for the present K^{sp} , i.e. before the future decrease in carrying capacity. The ordering of the OMPs and tunings is as for Fig. 1.

Appendix A

OMP1 20%

Fig. A1a: Trajectories of resource abundance, CPUE, catch and variation in catch for an application of **OMP1_15%** and **OMP1_20%** to the updated Reference Set. Ten individual trajectories are shown, with the median a dark dotted line; the shaded areas show 90% PIs. Note units for species-combined CPUE are those of the exploitable biomass to which it corresponds. Pre-2007, the average spawning biomass and species combined CPUE trajectories of the Reference Set and the actual species disaggregated CPUE and total catch are also shown.

OMP1_25%

OMP5_15%

Fig. A1b: Trajectories of resource abundance, CPUE, catch and variation in catch for an application of OMP1_25% and OMP5_15% to the updated Reference Set. Ten individual trajectories are shown, with the median a dark dotted line; the shaded areas show 90% PIs. Note units for species-combined CPUE are those of the exploitable biomass to which it corresponds. Pre-2007, the average spawning biomass and species combined CPUE trajectories of the Reference Set and the actual species disaggregated CPUE and total catch are also shown.

Fig. A1c: Trajectories of resource abundance, CPUE, catch and variation in catch for an application of OMP5_20% and OMP5_25% to the updated Reference Set. Ten individual trajectories are shown, with the median a dark dotted line; the shaded areas show 90% PIs. Note units for species-combined CPUE are those of the exploitable biomass to which it corresponds. Pre-2007, the average spawning biomass and species combined CPUE trajectories of the Reference Set and the actual species disaggregated CPUE and total catch are also shown.

OMP7_15%

OMP7_20%

Fig. A1d: Trajectories of resource abundance, CPUE, catch and variation in catch for an application of OMP7_15% and OMP7_20% to the updated Reference Set. Ten individual trajectories are shown, with the median a dark dotted line; the shaded areas show 90% PIs. Note units for species-combined CPUE are those of the exploitable biomass to which it corresponds. Pre-2007, the average spawning biomass and species combined CPUE trajectories of the Reference Set and the actual species disaggregated CPUE and total catch are also shown.

OMP7_25%

OMP11_15%

Fig. A1e: Trajectories of resource abundance, CPUE, catch and variation in catch for an application of **OMP7_25%** and **OMP11_15%** to the updated Reference Set. Ten individual trajectories are shown, with the median a dark dotted line; the shaded areas show 90% PIs. Note units for species-combined CPUE are those of the exploitable biomass to which it corresponds. Pre-2007, the average spawning biomass and species combined CPUE trajectories of the Reference Set and the actual species disaggregated CPUE and total catch are also shown.

OMP11_20%

OMP11_25%

Fig. A1f: Trajectories of resource abundance, CPUE, catch and variation in catch for an application of OMP11_20% and OMP11_25% to the updated Reference Set. Ten individual trajectories are shown, with the median a dark dotted line; the shaded areas show 90% PIs. Note units for species-combined CPUE are those of the exploitable biomass to which it corresponds. Pre-2007, the average spawning biomass and species combined CPUE trajectories of the Reference Set and the actual species disaggregated CPUE and total catch are also shown.

OMP1_20%-SR1

OMP1_20%-Ricker

Fig. A2a: Trajectories of resource abundance, CPUE, catch and variation in catch for an application of OMP1_20% to the updated SR1 and Ricker robustness tests. Ten individual trajectories are shown, with the median a dark dotted line; the shaded areas show 90% PIs. Note units for species-combined CPUE are those of the exploitable biomass to which it corresponds. Pre-2007, the average spawning biomass and species combined CPUE trajectories of the Reference Set and the actual species disaggregated CPUE and total catch are also shown. Results integrate over only four of the 24 Reference Set scenarios.

OMP1 20%- $\sigma_R = 0.4$

OMP1_20%-Decr in *K* in future

Fig. A2b: Trajectories of resource abundance, CPUE, catch and variation in catch for an application of OMP1_20% to the robustness tests with $\sigma_R=0.4$ (results integrate over only four of the 24 Reference Set scenarios) and the robustness test with a 30% decrease in future *K* (results integrate over all 24 Reference Set scenarios). Ten individual trajectories are shown, with the median a dark dotted line; the shaded areas show 90% PIs. Note units for species-combined CPUE are those of the exploitable biomass to which it corresponds. Pre-2007, the average spawning biomass and species combined CPUE trajectories of the Reference Set and the actual species disaggregated CPUE and total catch are also shown.