Annex F

Catches

[See Scientific Committee Report, Annex D, Appendix 7, this volume p. 125]

Annex G

The Specifications for the *Implementation Simulation Trials* for western North Pacific Bryde's whales

[See Scientific Committee Report, Annex D, Appendix 6, this volume p. 114]

Annex H

An integrated approach for the estimation of abundance through a random-effects model

T. Kitakado, D.S. Butterworth and H. Okamura

Method

Let N_{ay} be the true abundance in the a-th survey block in the year y, and let $\hat{N}_{ay}^{(P)}$ and $\hat{N}_{ay}^{(C)}$ denote estimates of N_{ay} obtained from passing-mode and closing-mode surveys respectively. If abundance estimates in different blocks or years include common parameters such as effective search half-width, then any two of them are correlated, and the method following takes this into account. It is assumed that the abundance estimates are multivariate normally distributed as follows:

$$\log \hat{N}_{ay}^{(P)} = \log N_{ay} + \varepsilon_{ay}^{(P)},$$
$$\log \hat{N}_{ay}^{(C)} = \log R_a N_{ay} + \varepsilon_{ay}^{(C)},$$

where the vectors of survey error terms, $\mathcal{E}^{(P)} = (\dots, \mathcal{E}_{ay}^{(P)}, \dots)'$ and $\mathcal{E}^{(C)} = (\dots, \mathcal{E}_{ay}^{(C)}, \dots)'$ have multivariate normal distributions $N(0, \hat{\Sigma}^{(P)})$ and $N(0, \hat{\Sigma}^{(C)})$, respectively. The variance-covariance matrices $\hat{\Sigma}^{(P)}$ and $\hat{\Sigma}^{(C)}$ are estimated using standard line transect methods. It is assumed that the true abundance level varies randomly as

$$\log N_{ay} = \mu_a + \rho_{ay}$$

where μ_a is a mean block-specific log-abundance for the middle year for the period for which data are available, and

 ρ_a is a random effect accounting for inter-annual changes in the distribution of the whale population in the surveyed area. The random effect is assumed to be independent and identically distributed according to the normal distribution $N(0, \sigma_A^2)$. Let $\mu = (\mu_1, ..., \mu_A)$ be a vector of the block effects. Then, the unbiased estimator for μ given σ_A^2 is derived from

$$\mu(\sigma_A^2) = (X' \ V(\sigma_A^2)^{-1}X)^{-1}X' \ V(\sigma_A^2)^{-1}y$$

where *X* is a design matrix, *y* is the vector of the abundance estimates, and $V(\sigma_A^2) = \sigma_A^2 I + \hat{\Sigma}$. The additional variance σ_A^2 is estimated by the REML method (McCulloch and Searle, 2001; Pawitan, 2001; Punt *et al.*, 1997; Skaug *et al.*, 2004), which maximise

$$l_{REML}(\sigma_{A}^{2}) = -\frac{1}{2} \log |D| - \frac{1}{2} \log |X' \ V(\sigma_{A}^{2})^{-1}X|$$
$$-\frac{1}{2} (y - X\beta(\sigma_{A}^{2}))' \ V(\sigma_{A}^{2})^{-1} (y - X\beta(\sigma_{A}^{2}))$$

The confidence interval for σ_A^2 can be calculated using the profile of the function above. Once σ_A^2 is estimated, then the estimate $\hat{\mu} = \mu(\hat{\sigma}_A^2)$ becomes available. At the same time, the covariance matrix of $\hat{\beta} = \beta(\hat{\sigma}_A^2)$ can be evaluated as

$$Cov(\hat{\beta}) = (X' \ V(\hat{\sigma}_{A}^{2})^{-1}X)^{-1}$$

The estimation of abundance in areas defined as FGH=F+G+H, IJK=I+J+K and LM=L+M (see Fig. 1) is now considered. For this purpose, option (a) in SC/O05/BWI6, where block K is included, is used. The abundance in each area is estimated by

$$\tilde{N} = \sum \exp(\hat{\mu}_a + Var(\hat{\mu}_a)/2)$$

and its variance by

$$\begin{aligned} V\hat{a}r(\tilde{N}) &= \sum_{a} \exp(2\hat{\mu}_{a}) \quad V\hat{a}r(\hat{\mu}_{a}) \\ &+ \sum_{a \neq a'} \exp(\hat{\mu}_{a}) \exp(\hat{\mu}_{a'}) \hat{\operatorname{cov}}(\hat{\mu}_{a}, \hat{\mu}_{a'}) \end{aligned}$$

The block-effects μ_a are estimated under the assumption that R_a is common across all blocks a.

Results

				Table 1					
(1) Es	(1) Estimates of block-effects								
	F	G	Н	Ι	J	Κ	L	М	
μ SE	7.89 0.443	7.89 0.459	7.57 0.539	8.46 0.455	8.41 0.480	6.03 0.662	6.97 0.488	7.25 0.566	

(2) Estimate of R (ratio of closing to passing mode estimates of abundance)

	R
Estimate	0.727
CV (%)	36.4

(3) Estimates of additional standard error and additional variance

	Estimate	95% CI
$\sigma_{_{A}}^{^{2}}$	0.453	(0.170, 1.041)
σ_A	0.673	(0.412, 1.020)

(4) Abundance estimates and their CVs (assuming passing mode estimates to be unbiased)

	FGH	IJK	LM	F-M
N-tilde	8,152	10,814	2,860	21,826
CV (%)	32.9	34.2	37.2	29.5

REFERENCES

- McCulloch, C.E. and Searle, S.R. 2001. *Generalised, Linear and Mixed Models*. Wiley and Sons Inc., New York.
- Pawitan, Y. 2001. In All Likelihood: Statistical Modeling and Inference Using Likelihood. Oxford University Press, New York. 528pp.
- Punt, A.E., Cooke, J.G., Borchers, D.L. and Strindberg, S. 1997. Estimating the extent of additional variance for Southern Hemisphere minke whales from the results of the IWC/IDCR cruises. *Reports of* the International Whaling Commission 47:431-34.
- Skaug, H.J., Øien, N., Schweder, T. and Bothun, G. 2004. Abundance of minke whales (*Balaenoptera acutorostrata*) in the northeastern Atlantic; variability in time and space. *Canadian Journal of Fisheries* and Aquatic Sciences 61(6):870-86.

Fig. 1. Survey blocks defined for 1998-2002 surveys.