

The Derivation of Sardine Length Frequency Distributions from November Surveys

C.L. de Moor*, J.C. Coetzee[#], D.S. Butterworth*

The process followed to derive the sardine length frequency distributions from the November surveys is summarised as follows:

- Acoustic data are collected continuously between stations that are positioned 10 nmi apart. These data are therefore averaged over elementary sampling distance units (ESDU, also referred to as the interval) that have a length of approximately 10 nmi. In some cases, an interval is interrupted in order to conduct a species identification trawl, resulting in intervals of shorter length. The interval is the sample unit from which the mean density for each transect is derived.
- Trawls are undertaken during the survey in a subjective manner. The decision on when to trawl is based upon several factors, including: the detection of sufficient pelagic targets, changes in the characteristics of the echogram since the last trawl was conducted, proximity of the detected targets to previous trawls on the transect and adjacent transects, available time, weather, time of day, etc. These decisions are taken by the acoustic operator on board, often in consultation with the chief scientist and are highly dependent on their experience. The trawls undertaken during three recent November surveys are plotted together with the survey cruise track in Figures 1 to 3.
- During the on board allocation process, each acoustic interval (or section of interval) is assigned to a particular trawl. Each trawl has an associated species composition and species specific length frequency and length frequency sample mass. These are necessary to derive a density for each species present in the interval as the density calculation is based on a species specific target strength derived for a particular size of fish, and the relative weighting of this target strength to that of other species present in the trawl.
- In general though, the interval is allocated to the closest trawl if that trawl was conducted on targets having similar echogram characteristics. There are, however, several deviations from this practice; see examples in Coetzee and Merkle (2006).
- It is therefore possible for one trawl or part of one trawl to be assigned to intervals in more than one stratum.
- It is therefore also possible to have different trawls, or parts of trawls to be assigned to different species in the same interval.
- The data available for the estimation of sardine length frequency distributions consists of:

^{*} MARAM (Marine Resource Assessment and Management Group), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701, South Africa. Email: <u>c.l.demoor@telkomsa.net</u>.

[#] Marine and Coastal Management, Department of Environmental Affairs and Tourism, Private Bag X2, Rogge Bay 8012, South Africa.

i) a set of acoustic data in which the following are stored: species, interval, interval length, interval density, the trawl grid reference assigned to that interval, stratum and stratum acoustic biomass of species; all intervals of zero density are removed from this data base;

ii) a set of trawl data in which the following are stored: trawl date, trawl grid reference, species, length group, observed number of species in length group and length frequency mass, *LFmas*, which is the total weight, by species, of the fish sampled for the length frequency.

For each species:

- Each trawl within a stratum is assigned an acoustic weighting using the product of interval lengths (within the stratum) and densities to which that trawl has been assigned (Equation A.1).
- The length frequency mass, *LFmas*, of each trawl is then used to calculate a trawl weighting factor for each trawl (Equation A.2). This is a number without units. This weighting factor is graphically displayed and tabulated in Figures 1 to 3 for three recent November surveys.
- The weighted length frequency for each stratum is then calculated by weighting the observed numbers in each length class of each trawl by the trawl's weighting factor (Equation A.3).
- This weighted length frequency is then scaled using the strata's biomass and divided by the total acoustic weighting of the trawls in each stratum to give the total numbers in each length class for each stratum (Equation A.4).
- The sum of this scaled weighted length frequency (termed Raised Length Frequency, RLF) over all strata gives the total survey weighted length frequency (Equation A.5).

These RLFs are then combined with the Age-Length Keys (ALKs) to calculate an observed proportion of numbers-at-age for the survey (Equations B.1 to B.2):

References

Coetzee, J.C., and Merkle, D. Some examples of acoustic echograms and allocation of intervals to trawls. MARAM International Stock Assessment Workshop, December 2008. MARAM IWS/DEC08/S/6.

N	D SIR	Wght	P Wght	NO	SIR	Wght	P Wght	NO	SIR	Wght	P Wght	NO	SIR	Wght	P Wght	NO	SIR	Wght	P Wght	NO	SIR	Wght	P Wght	NO	SIR	Wght	P Wght
1	А	155	0.5788	7	С	471	0.0736	17	С	21	0.1991		D	26	0.0001	36	D	62	0.0002	47	D	201	0.0007	55	D	1224	0.4760
	В	37	0.0224	8	С	430	0.0417	18	IC	210	0.0078	28	D	26	0.0000	37	D	21	0.0001	48	D	12	0.0006		Е	740	0.3481
	IA	26	0.7462		IC	1012	0.2499	19	С	15	0.0038	29	D	201	0.0605	38	D	27	0.0000		ID	3	0.0012	56	Е	6	0.0001
	IB	4	0.0116	9	С	1164	0.2352	20	С	196	0.0016		ID	219	0.5548	39	D	1364	0.0242	49	D	1270	0.0902	57	Е	63	0.0001
2	А	182	0.4212	10	С	39	0.0102	21	С	716	0.1368	30	D	97	0.0022	40	D	430	0.0043	50	Е	6	0.0118		IE	29	0.0002
	IA	14	0.2538	11	С	117	0.0034	22	С	93	0.0070	31	D	21	0.0001	41	D	5	0.0000		IE	14	0.0008	58	Е	522	0.4698
3	В	568	0.9776	12	С	152	0.0522	23	С	173	0.0792		ID	10	0.0004	42	D	43	0.0003	51	Е	151	0.0166		IE	201	0.1987
	IB	106	0.9884		IC	153	0.1329		IC	353	0.4113	32	D	114	0.0055	43	D	67	0.0012	52	Е	5	0.0016	59	Е	1345	0.0083
4	С	19	0.0010	13	С	779	0.1021	24	С	533	0.0907	33	D	10240	0.0312		ID	188	0.0277		IE	181	0.3558		IE	11	0.0004
	IC	49	0.0067	14	С	165	0.0001	25	С	43	0.0001	34	D	720	0.4159	44	D	32	0.0001	53	Е	2174	0.4154				
5	С	12	0.0012	15	С	306	0.0768	26	С	41	0.0005		ID	187	0.1902	45	D	3170	0.1000	54	Е	28	0.0103				
6	С	1661	0.0027	16	С	11164	0.0723	27	С	3	0.0000	35	D	53	0.0012	46	D	336	0.0104		IE	72	0.1619				

proportional to the trawl weighting factor (Waht in the table) The P Waht in the table denotes Z_{sj} November 2004 Spawner Biomass Survey Hondeklip Bay Port Edward Doring Bay Port St Johns Lambert's Bay 0 Columbine Port Alfr Cape Town Port Elizabethy Mossel Bay. Agulhas 49

No	STR	Wght	P Wght	No	ST	'i Wght	P Wght	No	ST	TWght	P Wght	No	ST	⁻ Wght	P Wght	No	SI	Wght	P Wght	No	ST	Wght	P Wght	No	ST	Wght	P Wght
1	А	1	0.004	10	С	40	0.044	20	С	3	0.000	30	D	64	0.002	40	D	229	0.193		IΕ	575	0.383	59	Е	1468	0.044
2	А	30	0.996		IC	1	0.010		IC	29	0.007		ID	970	0.122	41	D	50	0.046	51	Е	15	0.000	60	E	2636	0.569
3	В	1	1.000	11	С	60	0.025	21	С	2	0.000	31	D	5	0.000	42	D	57	0.031	52	Е	53	0.002	61	E	34	0.009
	IB	22	1.000	12	С	48	0.059	22	С	222	0.233	32	D	52	0.003		ID	182	0.497	53	Е	85	0.001		IE :	26	0.074
4	С	3	0.001	13	С	909	0.009	23	С	120	0.006	33	ID	5	0.001	43	D	111	0.001	54	Е	1452	0.010	62	Е	99	0.024
5	С	27	0.027	14	С	100	0.086	24	D	2	0.000	34	ID	1927	0.377	44	D	3730	0.159	55	Е	296	0.030	63	Е	14	0.000
6	С	5	0.006		IC	15	0.209	25	D	10	0.003		D	55	0.002	45	Е	13639	0.063		IE	236	0.265		IE	3	0.000
7	С	299	0.195	15	IC	7	0.007	26	D	35	0.010	35	D	47	0.016	46	Е	25	0.000	56	Е	715	0.005	64	Е	1595	0.072
	IC	71	0.766	16	С	7	0.000		ID	2	0.003	36	D	44	0.010	47	Е	16	0.000		IΕ	137	0.011		F	79	0.760
8	С	289	0.144	17	С	6	0.005	27	D	14	0.006	37	D	4450	0.124	48	Е	14	0.000	57	Е	7	0.002		IF	9	0.037
9	С	10	0.017	18	С	19	0.012	28	D	6	0.000	38	D	336	0.392	49	Е	252	0.054		IE	111	0.267	65	F	185	0.240
				19	С	73	0.003	29	D	24	0.002	39	D	¹⁰ 4	0.000	50	Е	695	0.042	58	Е	426	0.073		IF	1745	0.963

Figure 1. The November 2002 spawner biomass survey cruise track, with dots indicating the position of trawls undertaken. The size of the dots are

Figure 2. The November 2004 spawner biomass survey cruise track, with dots indicating the position of trawls undertaken. The size of the dots are Z_{sj}

Figure 3. The November 2006 spawner biomass survey cruise track, with dots indicating the position of trawls undertaken. The size of the dots are proportional to the trawl weighting factor (Wght in the table). The P Wght in the table denotes $\frac{Z_{sj}}{\sum_{j} Z_{sj}}$.

Appendix A: The Equations Summarising the Calculation of the Weighted Length Frequencies

The acoustic weighting for each trawl sample *j* in stratum *s* is given by:

$$Z_{sj} = \sum_{i} L_{sji} \cdot \rho_{sji} \tag{A.1}$$

where

 L_{sji} is the mean interval length (nmi) for trawl sample j and interval (ESDU) i in stratum s, and

 ρ_{sji} is the mean acoustic interval density (g.m⁻²) for trawl sample *j* and interval (ESDU) *i* in stratum *s*.

To weigh individual trawls, one needs to convert the acoustic weighting factor into a factor in terms of numbers. The trawl weighting factor is given by:

$$Q_{sj} = \frac{Z_{sj}}{X_{sj}} \tag{A.2}$$

where

 X_{sj} is the length frequency mass (kg) of trawl sample *j* in stratum *s*.

The weighted length frequency in stratum s is the vector $\underline{\mathbf{T}}_s$, which has elements

$$T_{sl} = \sum_{j} T_{sjl} \cdot Q_{sj} \tag{A.3}$$

where

 T_{sjl} are the elements of the vector \underline{T}_{sj} , being the observed numbers in length class *l* in trawl sample *j*, of stratum *s*.

The total numbers in stratum s is then the vector $\underline{\mathbf{L}}_{s}$, which has elements

$$L_{sl} = \frac{T_{sl} \cdot B_s}{\sum_i Z_{sj}} \tag{A.4}$$

where

 B_s is the biomass (kg) in stratum s.

The total numbers for the survey is then given by the vector $\underline{\mathbf{L}}^{tot}$, which has the elements

$$L_l^{tot} = \sum_s L_{sl} \tag{A.5}$$

Appendix B: The Equations Summarising the Calculation of the Proportion-at-Age in the Survey

The total number of fish of age a in length class l is:

$$N_{la} = \frac{n_{la}}{\sum_{a} n_{la}} L_l^{tot} \tag{B.1}$$

where

 n_{la} is the number of otoliths in length class *l* allocated to age *a*.

The proportion numbers-at-age from the survey is then given by

$$p_a = \frac{\sum_{l} N_{la}}{\sum_{a} \sum_{l} N_{la}}.$$
(B.2)