Sensitivity of abalone assessment model to having no recent commercial data

Éva Plagányi and Doug Butterworth Department of Mathematics and Applied Mathematics, University of Cape Town June 2008

ABSTRACT

The consequences of absence of availability of commercial data for the assessment of abalone in zones A and B are examined by assuming an absence of commercial data over the past five years. This results in the extent of uncertainty about current resource size roughly doubling, and of about current poaching levels roughly increasing by a factor of 1.5 for Zone A and 2.5 (i.e. more than double) for Zone B. These results point towards a substantial deterioration in ability to assess the abalone resource with reasonable precision in the next few years in the absence of trend information previously provided by CPUE data.

INTRODUCTION

The 2007 abalone assessment model (Plagányi 2007 a,b) is used to investigate the effect on model predictions given a scenario in which inshore FIAS data are assumed available, but it is assumed that no commercial CPUE or size structure data are available for the past five years. This was done as a rough initial check as to possible problems to be encountered in assessing abalone over the next few years given that the fishery has been closed (and hence no further commercial data will become available), but assuming that FIAS data will continue to be collected as in the past.

METHODS

The 2007 abalone stock assessment model Reference Case was used, with results compared with a scenario in which it is assumed that there were no commercial CPUE or size structure data available for the past five years. Available data over this period included the FIAS data and size structure information from confiscated samples of illegal catch. The recent trends in CPUE and FIAS have been similar.

In order to realistically test the effect of assuming no commercial data are available, it was necessary to first make an adjustment to the 2007 assessment model to account for the assumption of unrealistically high precision associated with the FIAS survey data. The sampling variance estimates available for FIAS are used as inputs in the model, but these estimates fail to include all sources of variability. To take this into account an additional variance component is added to the variance estimates, with a single additional variance parameter, assumed to be the same for each zone, estimated in the minimisation process. This is effected subject to the constraint that the overall variance must be greater than or the same as its externally input component.

The FIAS catchability coefficient q^s is thus estimated by its maximum likelihood value which, for the case of a log-normal error distribution, is given by:

$$\ln \hat{q}^{s} = \frac{\sum_{y} 1 / (\sigma_{y}^{s})^{2} (\ln I_{y}^{s} - \ln \hat{B}_{y}^{exp,s})}{\sum_{y} 1 / (\sigma_{y}^{s})^{2}}$$

where $(\sigma_y^{FS})^2 = (\sigma_{Add})^2 + \ln(1 + (CV_y)^2)$ and the coefficient of variation (CV_y) of the resource abundance estimate for year *y* is input.

The estimated additional variance parameter σ_{Add} is shown in Table 1, and its 90% confidence interval (normal approximation) shown in Table 2. The Tables show Hessian-based CVs, whereas the Figures give the Hessian-based 90% probability intervals.

Results presented here focus on Zones A and B. Projection results together with their associated uncertainties are also provided for a scenario in which it is assumed that future commercial catches remain set at zero but future poaching catches are half the current estimated level.

RESULTS AND DISCUSSION

Figures 1a,b illustrate the large increase in uncertainty associated with model predictions that results under a scenario with no commercial data available for a 5 year period. This is particularly evident for Zone A for which the spawning biomass estimate also increases substantially in the absence of recent CPUE information (Table 2; Fig 1a). In addition to the estimates of pre-exploitation biomass, there is a much larger uncertainty associated with estimates for the current spawning biomass (Table 2) – for example, the 90% confidence interval associated with the Reference Case current estimate of spawning biomass in Zone A is 1640-4040 tonnes, which widens to 1080-6500 tonnes under the scenario with no recent commercial data. In broad terms, had no commercial data been available for the past five years, the uncertainty associated with current estimates of resource status would be roughly double.

The estimates of poaching in the model are key. Fig. 2 highlights the large increase in uncertainty associated with these estimates when no commercial data are available. For the poaching estimates for 2007, without commercial data for the last five years uncertainty roughly increased by a factor of 1.5 for Zone A and 2.5 (ie more than double) for Zone B.

Overall the results presented here point towards a substantial deterioration in ability to assess the abalone resource with reasonable precision in the next few years in the absence of additional resource trend information such as that previously provided by the commercial CPUE data.

Literature cited

- Plagányi, É.E. 2007a. A summary of the assessment and management approach applied to South African abalone in Zones A-D. Marine and Coastal Management document WG/AB/07/Jun/01: 20 pp
- Plagányi, É.E. 2007b. Projection results for Zones A, B, C and D in 2007. Marine and Coastal Management document: WG/AB/07/Aug/27: 11 pp.

Table 1. Comparison of selected model results when using the full 2007 Reference Case assessment model as compared to a scenario in which the commercial CPUE and catch-at-age information from the last five years are excluded when fitting the model.

No. parameters 30	Model	a) Ref. cas	se				b) Scenario	o with no re	cent CPUE		
Zane A B CNP CP D A B CNP CP D Ave confiscino % 14% 45% 7% 5% 11% 53% 10% 6% 6% B(0) % 7385 5754 2606 4385 9173 9038 5900 2.02 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.057 0.055 0.055 0.055 0.057 0.055 0.057 0.055 0.057 0.055 0.057 55032 745288	No. parameters			30					30		
Ave confiscation % 14% 45% 7% 5% 11% 53% 10% 53% 10% 53% 10% 53% 10% 53% 10% 53% 10% 53% 10% 53% 10% 53% 10% 53% 10% 53% 10% 53% 10% 53% 10% 53% 10% 53% 10% 53% 10% 60% 0.027 0.023 0.033 0.033 0.033 0.033 0.033 0.035 0.040 0.9	Zone	Α	В	CNP	СР	D	Α	В	CNP	СР	D
μ(p)" 7385 5754 2006 4385 9173 9038 5900 2209 4371 10778 p 0.03 0.033 0.033 0.033 0.035 0.055 0.055 0.055 0.057 0.055 0.057 0.055 0.057 0.055 0.057 0.055 0.057 0.055 0.057 0.055 0.057 0.055 0.057 0.055 0.057 0.055 0.057 0.055 0.057 0.055 0.057 0.055 0.057 0.055 0.057 0.057 745288 C/max Virasion 1000 100000 100000 100000	Ave confiscation %	14%	45%	7%		5%	11%	53%	10%		6%
p 0.033 0.033 0.033 0.037 0.033 0.047 0.033 0.055 0.055 0.027 0.065 Cymax (m.) 1283760 7.86E+05 561607 800613 1573300 6.75E+05 560322 745288 Cymax (W1) 400 356 2002 1995 2002 1995 2002 1995 2002 1995 2002 1995 2002 10 88 C/P2007 (MT) 524 243 0 97 632 200 10 88 Ma 0.137 0.137 0.137 0.137 0.137 10.38 899891 1.45349 1.45349 1.45491 1.45491 1.45491 1.45491 1.45491 1.45491 0.000168 1.45491 1.45491 0.007169 1.45491 1.45491 1.45491 1.45491 1.4549 1.45491 1.4549 1.4549 1.4549 1.4549 1.4549 1.4549 1.4549 1.4549 1.4549 1.4549 1.4549 1.4549<	$B(0)^{sp}$	7385	5754	2606	4385	9173	9038	5900	2209	4371	10778
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ρ	0.033	0.033	0.033	0.017	0.033	0.055	0.055	0.055	0.027	0.055
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	r^{I}	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C_{pmax} (no)	1283760	7 85E+05	0.0	561607	800613	1576380	6 75E+05	0.0	560332	745288
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Comax (MT)	440	356		269	394	545	310		267	352
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Comax (YEAR)	2006	2002		1995	2002	2006	2002		1995	2002
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CP(2007) (MT)	524	243		0	97	632	220		1000	88
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	M	524	245	0 324	0	51	0.52	220	0 324	10	00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				0.024					0.324		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M 15			0.137					0.137		
	a(CS)			8.99892					8.99894		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	a(RS)			8.99951					8.99942		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	a(PS)			4.52556					4.09957		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	a(FS)			6.72678					6.18446		
	a(OS)			4.55789					4.9432		
$\begin{array}{ $	a(IS)			-					-		
$\begin{array}{ c c c c c c c c c c c c c$	$\mu(CS)$			0.000331					0.000479		
$\begin{array}{ c c c c c c c c c c c c $	$\mu(RS)$			0.001219					0.000885		
$\begin{array}{ c c c c c c c c c c c c c$	$\mu(PS)$			0.000185					0.000186		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mu(FS)$			0.001692					0.001393		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mu(OS)$			4.74E-12					0.000169		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mu(IS)$			-					-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	δ(CS)			477.913					313.251		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	δ(RS)			617.99					608.691		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	δ(PS)			1.45491					35.9951		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	δ(FS)			0.779493					0.880385		
	δ(OS)			0.668497					0.676621		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8/18/1										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0(15)			-					-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Model	a) Ref. cas	se	-	CD	D	b) Sensitiv	ity	-	CD	D
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Model	a) Ref. cas A	B	- CNP	<u>CP</u>	D	b) Sensitiv	ity B	- <u>CNP</u>	<u>CP</u>	D
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- <i>ln</i> L CPUE	a) Ref. cas <u>A</u> -44.402	B -50.722	- -35.323	<u>CP</u> -44.862	D -34.480	b) Sensitiv <u>A</u> -41.450	ity -39.067	- -34.492	<u>CP</u> -44.380	D -26.724
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- <i>ln</i> L CPUE - <i>ln</i> L FIAS	a) Ref. cas <u>A</u> -44.402 0.630	B -50.722 -4.472	- -35.323 -3.394	CP -44.862 4.724	D -34.480 -4.038	b) Sensitiv <u>A</u> -41.450 0.673	ity -39.067 -4.154	- -34.492 -4.764	CP -44.380 4.886	D -26.724 -4.195
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	In L CPUE In L FIAS In L age CS	a) Ref. cas <u>A</u> -44.402 0.630 -17.044	B -50.722 -4.472 -18.464	-35.323 -3.394 -8.483	CP -44.862 4.724 -10.540	D -34.480 -4.038 -11.797	b) Sensitiv <u>A</u> -41.450 0.673 -14.161	B -39.067 -4.154 -14.464	-34.492 -34.764 -7.155 7.170	CP -44.380 4.886 -10.517 0.018	D -26.724 -4.195 -9.700 & 705
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- <i>ln</i> L CPUE - <i>ln</i> L FIAS - <i>ln</i> L age CS - <i>ln</i> L age RS	a) Ref. cas <u>A</u> -44.402 0.630 -17.044 -1.642 2.777	B -50.722 -4.472 -18.464 -8.002 2 200	CNP -35.323 -3.394 -8.483 -6.819	CP -44.862 4.724 -10.540 -0.006 1 803	D -34.480 -4.038 -11.797 -8.854 2 751	b) Sensitiv <u>A</u> -41.450 0.673 -14.161 -1.645 2 780	B -39.067 -4.154 -14.464 -8.090 2.624	-34.492 -34.764 -7.155 -7.179	CP -44.380 4.886 -10.517 -0.018 1.027	D -26.724 -4.195 -9.700 -8.705 2.220
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- <i>ln</i> L CPUE - <i>ln</i> L FIAS - <i>ln</i> L age CS - <i>ln</i> L age RS - <i>ln</i> L age PS - <i>ln</i> L age FIAS	a) Ref. cas <u>A</u> -44.402 0.630 -17.044 -1.642 -2.777 1.024	B -50.722 -4.472 -18.464 -8.002 -3.299 0.025	CNP -35.323 -3.394 -8.483 -6.819	CP -44.862 4.724 -10.540 -0.006 -1.803 0.252	D -34.480 -4.038 -11.797 -8.854 -3.751 5.205	b) Sensitiv <u>A</u> -41.450 0.673 -14.161 -1.645 -2.789 2.918	B -39.067 -4.154 -14.464 -8.090 -2.624 0.024	<u>CNP</u> -34.492 -4.764 -7.155 -7.179	CP -44.380 4.886 -10.517 -0.018 -1.937 0.245	D -26.724 -4.195 -9.700 -8.705 -3.230 5.054
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-In L CPUE -In L CPUE -In L FIAS -In L age CS -In L age RS -In L age FIAS In L age GS inchora	a) Ref. cas <u>A</u> -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060	-35.323 -3.394 -8.483 -6.819 -3.913	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.260	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945	b) Sensitiv <u>A</u> -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230	B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117	-34.492 -34.492 -4.764 -7.155 -7.179 -4.777	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	o(13) Model -ln L CPUE -ln L FIAS -ln L age CS -ln L age RS -ln L age PS -ln L age OS inshore ln L age OS affeth	a) Ref. cas <u>A</u> -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 2.619	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 1.690	-35.323 -3.394 -8.483 -6.819 -3.913	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 0.840	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 1 955	b) Sensitiv <u>A</u> -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 2.128	B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 1 230	- 34.492 -34.492 -4.764 -7.155 -7.179 -4.777	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 0.005	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 2.159
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Model - <i>ln</i> L CPUE - <i>ln</i> L FIAS - <i>ln</i> L age CS - <i>ln</i> L age RS - <i>ln</i> L age PS - <i>ln</i> L age FIAS - <i>ln</i> L age OS inshore - <i>ln</i> Lage OS offsh.	a) Ref. cas <u>A</u> -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -0.04	CNP -35.323 -3.394 -8.483 -6.819 -3.913	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128	B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 0.972	<u>CNP</u> -34.492 -4.764 -7.155 -7.179 -4.777	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o(13) Model -ln L CPUE -ln L FIAS -ln L age CS -ln L age RS -ln L age FIAS -ln L age OS inshore -ln L age IS insh-offsh. -ln L age IS insh-offsh.	a) Ref. cas <u>A</u> -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -08.637	CNP -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 113.585	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -1.855	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548	B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631	<u>CNP</u> -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Model -In L CPUE -In L FIAS -In L age CS -In L age RS -In L age PS -In L age FIAS -In L age OS inshore -In Lage OS offsh. -In L age IS insh+offsh. -In L zone subtotal -In L TOTAL	a) Ref. cas <u>A</u> -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637	CNP -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -257.588	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548	B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631	CNP -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -224.800	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Model -In L CPUE -In L FIAS -In L age CS -In L age RS -In L age PS -In L age FIAS -In L age OS inshore -In Lage OS offsh. -In L zone subtotal -In L TOTAL - CPUE	a) Ref. cas <u>A</u> -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.110	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637	CNP -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.002	B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631	CNP -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -1113.764 -324.809 0.120	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Model -In L CPUE -In L FIAS -In L age CS -In L age RS -In L age PS -In L age PS -In L age OS inshore -In L age OS offsh. -In L age IS insh+offsh. -In L zone subtotal -In L TOTAL G CPUE T age CS	a) Ref. cas <u>A</u> -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.070	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.064 -98.637 0.094 0.072	- -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.111	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.007	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076	B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631 0.103 0.075	- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Model - <i>ln</i> L CPUE - <i>ln</i> L FIAS - <i>ln</i> L age CS - <i>ln</i> L age RS - <i>ln</i> L age PS - <i>ln</i> L age FIAS - <i>ln</i> L age OS inshore - <i>ln</i> Lage OS offsh. - <i>ln</i> L age IS insh+offsh. - <i>ln</i> L zone subtotal - <i>ln</i> L TOTAL σ CPUE σ age CS σ age CS σ age S	a) Ref. cas <u>A</u> -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.079 0.114	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.064 -98.637 0.094 0.073 0.057	- -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.114 0.061	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810 0.064 0.094 0.204	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.097 0.050	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076 0.114	B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631 0.103 0.075 0.075	- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117 0.058	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995 0.066 0.089 0.408	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.099 0.061
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o(13) Model -ln L CPUE -ln L FIAS -ln L age CS -ln L age RS -ln L age FIAS -ln L age OS offsh. -ln L age IS insh+offsh. -ln L zone subtotal -ln L TOTAL σ CPUE σ age RS σ age RS	a) Ref. cas <u>A</u> -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.079 0.114 0.422	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637 0.094 0.073 0.057 0.421	- -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.114 0.061	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810 0.064 0.094 0.201 0.152	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.097 0.059 0.009	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076 0.114 0.124	ity B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631 0.103 0.075 0.057 0.422	- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117 0.058	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995 0.066 0.089 0.198 0.150	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.099 0.061 0.108
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Model - <i>ln</i> L CPUE - <i>ln</i> L FIAS - <i>ln</i> L age CS - <i>ln</i> L age RS - <i>ln</i> L age PS - <i>ln</i> L age FIAS - <i>ln</i> L age OS inshore - <i>ln</i> L age OS offsh. - <i>ln</i> L age IS insh+offsh. - <i>ln</i> L zone subtotal - <i>ln</i> L TOTAL σ CPUE σ age CS σ age RS σ age PS σ age EAS	a) Ref. cas A -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.079 0.114 0.122 0.422	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637 0.094 0.073 0.057 0.131 0.070	- -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.114 0.061 0.002	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810 0.064 0.094 0.201 0.153 0.122	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.097 0.059 0.098 0.096	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076 0.114 0.121 0.114	ity B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -9.924 -9.924 -9.924 -0.872 -81.631 0.103 0.075 0.057 0.142 0.070	- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117 0.058 0.080	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995 0.066 0.089 0.198 0.150 0.150	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.099 0.061 0.108 0.001
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Model -ln L CPUE -ln L FIAS -ln L age CS -ln L age RS -ln L age PS -ln L age OS inshore -ln L age OS inshore -ln L age IS insh-offsh. -ln L zone subtotal -ln L TOTAL σ CPUE σ age CS σ age RS σ age FIAS σ OS in age	a) Ref. cas A -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.079 0.114 0.122 0.132 0.026	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637 0.094 0.057 0.131 0.070 0.62	CNP -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.114 0.061 0.093	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810 0.064 0.094 0.201 0.153 0.132 0.052	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.097 0.059 0.098 0.086 0.072	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076 0.114 0.121 0.114 0.40	B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631 0.103 0.075 0.057 0.142 0.070 0.060	- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117 0.058 0.080	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995 0.066 0.089 0.198 0.150 0.136 0.047	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.099 0.061 0.108 0.091 0.064
Initial Statistics Initial Statistics Initial Statistics Initial Statistics Initial Statistics $B^{sp}(2007)/K$ (Insh. + Offsh) 0.38 0.31 0.05 0.06 0.15 0.42 0.000642 0.000224 $B^{sp}(2007)/K$ (Insh. + Offsh) 0.38 0.31 0.05 0.06 0.15 0.42 0.36 0.14 0.00022 $B^{sp}(2007)/K$ (Insh.) 0.29 0.27 0.00 0.00 0.03 0.27 0.32 0.01 0.00 0.06 $B^{sp}(2007)/K$ (Insh.) 0.57 0.39 0.16 0.26 0.38 0.61 0.41 0.29 0.25 0.42 $B^{total}(2007)/K$ 0.43 0.35 0.05 0.13 0.46 0.41 0.12 0.07 0.20 $B^{commercial}(2007)/K$ 0.33 0.22 0.07 0.07 0.19 0.39 0.28 0.16 0.09 0.28 FIAS N_{2007}/N_{1951} 0.28 0.33 0.00 0.00 0.01 0.22 0.39 0.00 0.02	o(13) Model -ln L CPUE -ln L FIAS -ln L age CS -ln L age RS -ln L age FIAS -ln L age OS inshore -ln L age OS offsh. -ln L age IS insh+offsh. -ln L TOTAL σ CPUE σ age CS σ age FIAS σ OS insh. σ OS insh.	a) Ref. cas A -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.079 0.114 0.122 0.132 0.036 0.029	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637 0.094 0.073 0.057 0.131 0.070 0.063	CNP -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.114 0.061 0.093	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810 0.064 0.094 0.201 0.153 0.132 0.053 0.092	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.097 0.059 0.098 0.086 0.073 0.025	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076 0.114 0.121 0.114 0.040 0.046	B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631 0.103 0.075 0.057 0.142 0.070 0.060 0.057	- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117 0.058 0.080	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995 0.066 0.089 0.198 0.150 0.136 0.047 0.071	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.099 0.061 0.108 0.091 0.064 0.028
Authonial variance 0.402 0.402 0.402 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.00112 0.00024 0.000612 0.000295 0.001024 0.00022 Depletion statistics B^{sp} (2007)/K (Insh. + Offsh) 0.38 0.31 0.05 0.06 0.15 0.42 0.36 0.14 0.08 0.222 B^{sp} (2007)/K (Insh.) 0.29 0.27 0.00 0.00 0.03 0.27 0.32 0.01 0.00 0.06 B^{sp} (2007)/K (Insh.) 0.29 0.27 0.00 0.00 0.03 0.27 0.32 0.01 0.00 0.06 B^{sp} (2007)/K (Offsh.) 0.57 0.39 0.16 0.26 0.38 0.61 0.41 0.29 0.25 0.42 B^{total} (2007)/K 0.43 0.35 0.05 0.13 0.46 0.41 0.12 0.07 0.20 $B^{continercial}$ (2007)/K 0.33 0.22 0.07 0.07 0.19 <th< td=""><td>Model -ln L CPUE -ln L FIAS -ln L age CS -ln L age RS -ln L age PS -ln L age FIAS -ln L age OS offsh. -ln L age IS insh-offsh. -ln L zone subtotal -ln L TOTAL σ CPUE σ age CS σ age RS σ age FIAS σ OS insh. σ OS offsh. σ OS offsh.</td><td>a) Ref. cas A -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.079 0.114 0.122 0.132 0.036 0.038</td><td>B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637 0.094 0.073 0.057 0.131 0.070 0.063 0.043 0.026</td><td>CNP -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.114 0.061 0.093</td><td>CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810 0.064 0.094 0.201 0.153 0.132 0.053 0.082</td><td>D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.097 0.059 0.098 0.086 0.073 0.035</td><td>b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076 0.114 0.121 0.114 0.040 0.046</td><td>B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631 0.103 0.075 0.057 0.142 0.070 0.060 0.057 0.042</td><td>- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117 0.058 0.080 0.067</td><td>CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995 0.066 0.089 0.198 0.150 0.136 0.047 0.071</td><td>D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.099 0.061 0.108 0.091 0.064 0.028</td></th<>	Model -ln L CPUE -ln L FIAS -ln L age CS -ln L age RS -ln L age PS -ln L age FIAS -ln L age OS offsh. -ln L age IS insh-offsh. -ln L zone subtotal -ln L TOTAL σ CPUE σ age CS σ age RS σ age FIAS σ OS insh. σ OS offsh. σ OS offsh.	a) Ref. cas A -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.079 0.114 0.122 0.132 0.036 0.038	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637 0.094 0.073 0.057 0.131 0.070 0.063 0.043 0.026	CNP -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.114 0.061 0.093	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810 0.064 0.094 0.201 0.153 0.132 0.053 0.082	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.097 0.059 0.098 0.086 0.073 0.035	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076 0.114 0.121 0.114 0.040 0.046	B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631 0.103 0.075 0.057 0.142 0.070 0.060 0.057 0.042	- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117 0.058 0.080 0.067	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995 0.066 0.089 0.198 0.150 0.136 0.047 0.071	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.099 0.061 0.108 0.091 0.064 0.028
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	o(13) Model -ln L CPUE -ln L age CS -ln L age RS -ln L age PS -ln L age OS offsh. -ln L age IS insh-offsh. -ln L zone subtotal -ln L TOTAL σ CPUE σ age CS σ age PS σ age FIAS σ OS offsh. σ S age RS σ age FIAS σ OS offsh. σ IS Additional variance	a) Ref. cas <u>A</u> -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.079 0.114 0.122 0.132 0.036 0.038 0.402	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637 0.094 0.073 0.057 0.131 0.070 0.063 0.043 0.036	- -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.114 0.061 0.093 0.071	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810 0.064 0.094 0.201 0.153 0.132 0.053 0.082	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.097 0.059 0.098 0.086 0.073 0.035	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076 0.114 0.040 0.046 0.281	B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631 0.103 0.075 0.057 0.060 0.057 0.042	- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117 0.058 0.080 0.080	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995 0.066 0.089 0.198 0.150 0.136 0.047 0.071	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.099 0.061 0.108 0.091 0.064 0.028
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Model - <i>ln</i> L CPUE - <i>ln</i> L FIAS - <i>ln</i> L age CS - <i>ln</i> L age RS - <i>ln</i> L age PS - <i>ln</i> L age FIAS - <i>ln</i> L age OS inshore - <i>ln</i> Lage OS offsh. - <i>ln</i> L age IS insh+offsh. - <i>ln</i> L zone subtotal - <i>ln</i> L TOTAL σ CPUE σ age CS σ age RS σ age FIAS σ OS insh. σ OS offsh. σ IS Additional variance a CPUE	a) Ref. cas <u>A</u> -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.079 0.114 0.122 0.036 0.038 0.402 0.0022	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637 0.094 0.057 0.131 0.070 0.063 0.043 0.036	- -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.114 0.061 0.093 0.071 0.003724	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810 0.064 0.094 0.201 0.153 0.132 0.053 0.082	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.097 0.098 0.086 0.073 0.035	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076 0.114 0.040 0.046 0.381 0.09249	B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631 0.103 0.075 0.057 0.142 0.070 0.060 0.057 0.042	- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117 0.058 0.080 0.067 0.003055	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995 0.066 0.089 0.198 0.150 0.136 0.047 0.071	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.099 0.061 0.108 0.091 0.064 0.028
$B^{-sp}(2007)/K$ (Insh.) 0.38 0.31 0.05 0.06 0.15 0.42 0.36 0.14 0.08 0.22 $B^{sp}(2007)/K$ (Insh.) 0.29 0.27 0.00 0.00 0.03 0.27 0.32 0.01 0.00 0.06 $B^{sp}(2007)/K$ (Offsh.) 0.57 0.39 0.16 0.26 0.38 0.61 0.41 0.29 0.25 0.42 $B^{total}(2007)/K$ 0.43 0.35 0.05 0.05 0.13 0.46 0.41 0.12 0.07 0.20 $B^{commercial}(2007)/K$ 0.33 0.22 0.07 0.07 0.19 0.39 0.28 0.16 0.09 0.28 FIAS N_{2007}/N_{1951} 0.28 0.33 0.00 0.00 0.01 0.22 0.39 0.00 0.02	Model - <i>ln</i> L CPUE - <i>ln</i> L FIAS - <i>ln</i> L age CS - <i>ln</i> L age RS - <i>ln</i> L age PS - <i>ln</i> L age FIAS - <i>ln</i> L age OS inshore - <i>ln</i> Lage OS offsh. - <i>ln</i> L age IS insh+offsh. - <i>ln</i> L zone subtotal - <i>ln</i> L TOTAL σ CPUE σ age CS σ age RS σ age PS σ age FIAS σ OS insh. σ OS offsh. σ IS Additional variance q CPUE	a) Ref. cas <u>A</u> -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.079 0.114 0.122 0.036 0.038 0.402 0.00033	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637 0.094 0.057 0.131 0.070 0.063 0.043 0.036 0.000645	- -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.114 0.061 0.093 0.071 0.003734	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810 0.064 0.094 0.094 0.201 0.153 0.132 0.053 0.082	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.097 0.098 0.086 0.073 0.035	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076 0.114 0.121 0.114 0.040 0.046 0.381 0.000248	B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631 0.103 0.075 0.057 0.042 0.000612	- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117 0.058 0.080 0.080 0.067 0.003095	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995 0.095 0.089 0.198 0.150 0.136 0.047 0.071 0.001024	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.099 0.061 0.108 0.091 0.064 0.028
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Model - <i>ln</i> L CPUE - <i>ln</i> L FIAS - <i>ln</i> L age CS - <i>ln</i> L age RS - <i>ln</i> L age FIAS - <i>ln</i> L age FIAS - <i>ln</i> L age OS inshore - <i>ln</i> L age OS inshore - <i>ln</i> L age IS insh+offsh. - <i>ln</i> L zone subtotal - <i>ln</i> L zone subtotal - <i>ln</i> L TOTAL σ CPUE σ age RS σ age RS σ age FIAS σ OS insh. σ OS insh. σ OS insh. σ IS Additional variance q CPUE Depletion statistics Depletion statistics	a) Ref. cas A -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.079 0.114 0.122 0.036 0.038 0.402 0.00033 0.22	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637 0.094 0.073 0.057 0.131 0.070 0.063 0.043 0.036	- -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.114 0.061 0.093 0.071 0.003734 0.05	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810 0.064 0.094 0.201 0.153 0.153 0.153 0.082 0.00098	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.097 0.059 0.098 0.086 0.073 0.035	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076 0.114 0.040 0.046 0.381 0.000248 0.10	ity <u>B</u> -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631 0.103 0.075 0.057 0.042 0.000612 0.000612	- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117 0.058 0.080 0.067 0.003095	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995 0.095 0.095 0.089 0.198 0.198 0.150 0.136 0.047 0.071 0.001024	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.099 0.061 0.108 0.091 0.064 0.028 0.00022
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Model - <i>ln</i> L CPUE - <i>ln</i> L FIAS - <i>ln</i> L age CS - <i>ln</i> L age RS - <i>ln</i> L age FIAS - <i>ln</i> L age FIAS - <i>ln</i> L age IS insh-roffsh. - <i>ln</i> L age RS σ age RS σ age RS σ age FIAS σ OS insh. σ OS offsh. σ IS Additional variance q CPUE Depletion statistics B^{3p} (2007)/K (Insh. + Offsh)	a) Ref. cas A -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.079 0.114 0.122 0.132 0.036 0.038 0.402 0.00033 0.38	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637 0.094 0.073 0.057 0.131 0.070 0.063 0.043 0.036 0.000645	CNP -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.114 0.061 0.093 0.071 0.003734 0.05	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810 0.064 0.094 0.201 0.153 0.153 0.082 0.00098 0.006	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.097 0.059 0.098 0.098 0.035 0.000272 0.15	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076 0.114 0.121 0.114 0.040 0.046 0.381 0.000248 0.42	ity B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631 0.103 0.075 0.057 0.142 0.070 0.060 0.057 0.042 0.000612 0.366	- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117 0.058 0.080 0.067 0.003095 0.14	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995 0.095 0.198 0.198 0.198 0.150 0.136 0.047 0.071 0.001024 0.008	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.099 0.061 0.108 0.091 0.064 0.028 0.00022 0.22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Model - <i>ln</i> L CPUE - <i>ln</i> L FIAS - <i>ln</i> L age CS - <i>ln</i> L age RS - <i>ln</i> L age PS - <i>ln</i> L age FIAS - <i>ln</i> L age OS inshore - <i>ln</i> L age OS inshore - <i>ln</i> L age OS inshore - <i>ln</i> L age IS insh+offsh. - <i>ln</i> L zone subtotal - <i>ln</i> L TOTAL σ CPUE σ age CS σ age RS σ age FIAS σ OS insh. σ OS offsh. σ IS Additional variance q CPUE Depletion statistics B^{sp} (2007)/K (Insh.) + Offsh) B^{sp} (2007)/K (Insh.)	a) Ref. cas A -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.079 0.114 0.122 0.132 0.036 0.038 0.402 0.00033 0.38 0.29	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637 0.094 0.073 0.057 0.131 0.070 0.063 0.036 0.000645 0.31 0.27	- -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.114 0.061 0.093 0.071 0.003734 0.05 0.00	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810 0.064 0.094 0.201 0.153 0.132 0.082 0.00098 0.00098	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.097 0.059 0.098 0.086 0.073 0.035 0.0002722 0.15 0.03	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076 0.114 0.040 0.046 0.381 0.000248 0.42 0.27	ity B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -9.924 -9.924 -1.117 -1.320 -0.872 -81.631 0.103 0.075 0.057 0.142 0.070 0.060 0.057 0.042 0.000612 0.36 0.32	- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117 0.058 0.080 0.067 0.003095 0.14 0.01	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995 0.095 0.089 0.198 0.150 0.136 0.047 0.071 0.001024 0.08 0.00	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.099 0.061 0.108 0.091 0.064 0.028 0.00022 0.22 0.06
B commercial (2007)/K 0.33 0.22 0.07 0.07 0.19 0.39 0.28 0.16 0.09 0.28 FIAS N 2007/N 1951 0.28 0.33 0.00 0.00 0.01 0.22 0.39 0.00 0.00 0.02	Model - <i>ln</i> L CPUE - <i>ln</i> L FIAS - <i>ln</i> L age CS - <i>ln</i> L age RS - <i>ln</i> L age PS - <i>ln</i> L age OS inshore - <i>ln</i> L age IS insh+offsh. - <i>ln</i> L cone subtotal - <i>ln</i> L TOTAL σ CPUE σ age CS σ age RS σ age RS σ age FIAS σ OS insh. σ OS offsh. σ IS Additional variance q CPUE Depletion statistics $B^{sp}(2007)/K$ (Insh.) + Offsh) $B^{sp}(2007)/K$ (Offsh.)	a) Ref. cas A -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.079 0.114 0.122 0.132 0.036 0.038 0.402 0.00033 0.38 0.29 0.57	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637 0.094 0.073 0.057 0.131 0.070 0.063 0.043 0.036 0.000645 0.31 0.27 0.39	- -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.114 0.061 0.093 0.071 0.003734 0.05 0.00 0.16	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810 0.064 0.094 0.201 0.153 0.132 0.053 0.082 0.00098 0.006 0.00 0.26	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.097 0.059 0.098 0.086 0.073 0.035 0.000272 0.15 0.03 0.38	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076 0.114 0.121 0.114 0.040 0.046 0.381 0.000248 0.42 0.27 0.61	ity B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631 0.103 0.075 0.057 0.142 0.070 0.060 0.057 0.042 0.000612 0.36 0.32 0.41	- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117 0.058 0.080 0.067 0.003095 0.14 0.01 0.29	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995 0.095 0.089 0.198 0.150 0.136 0.047 0.071 0.001024 0.08 0.00 0.25	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.099 0.061 0.108 0.091 0.064 0.028 0.00022 0.22 0.06 0.42
FIAS N 2007/N 1951 0.28 0.33 0.00 0.01 0.22 0.39 0.00 0.02	Model - <i>ln</i> L CPUE - <i>ln</i> L FIAS - <i>ln</i> L age CS - <i>ln</i> L age RS - <i>ln</i> L age PS - <i>ln</i> L age PS - <i>ln</i> L age OS offsh. - <i>ln</i> L age OS offsh. - <i>ln</i> L age IS insh+offsh. - <i>ln</i> L age IS insh+offsh. - <i>ln</i> L zone subtotal - <i>ln</i> L TOTAL σ CPUE σ age CS σ age RS σ age FIAS σ OS offsh. σ OS offsh. σ OS offsh. σ OS offsh. σ OS offsh. σ OS offsh. σ IS Additional variance q CPUE Depletion statistics $B^{sp}(2007)/K$ (Insh.) $B^{stotal}(2007)/K$	a) Ref. cas <u>A</u> -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.079 0.114 0.122 0.132 0.036 0.038 0.402 0.00033 0.38 0.29 0.57 0.43	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637 0.094 0.073 0.057 0.131 0.070 0.063 0.036 0.000645 0.31 0.27 0.39 0.35	- -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.114 0.061 0.093 0.071 0.003734 0.05 0.00 0.16 0.05	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810 0.064 0.094 0.201 0.153 0.132 0.053 0.082 0.00098 0.066 0.00 0.26 0.05	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.097 0.059 0.098 0.086 0.073 0.035 0.000272 0.15 0.03 0.38 0.13	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076 0.114 0.040 0.046 0.381 0.000248 0.42 0.27 0.61 0.46	ity B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631 0.103 0.075 0.057 0.142 0.070 0.060 0.057 0.042 0.000612 0.36 0.32 0.41 0.41	- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117 0.058 0.080 0.067 0.003095 0.14 0.01 0.29 0.12	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995 0.095 0.089 0.198 0.150 0.136 0.047 0.071 0.001024 0.001024 0.08 0.00 0.25 0.07	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.099 0.061 0.108 0.091 0.064 0.028 0.00022 0.22 0.06 0.42 0.20
	Model - <i>ln</i> L CPUE - <i>ln</i> L FIAS - <i>ln</i> L age CS - <i>ln</i> L age RS - <i>ln</i> L age PS - <i>ln</i> L age PS - <i>ln</i> L age OS inshore - <i>ln</i> Lage OS offsh. - <i>ln</i> L age IS insh+offsh. - <i>ln</i> L age IS insh+offsh. - <i>ln</i> L zone subtotal - <i>ln</i> L TOTAL σ CPUE σ age CS σ age RS σ age PS σ age FIAS σ OS insh. σ OS offsh. σ IS Additional variance q CPUE Depletion statistics B^{sp} (2007)/K (Insh.) B^{total} (2007)/K $B^{commercial}$ (2007)/K	a) Ref. cas <u>A</u> -44.402 0.630 -17.044 -1.642 -2.777 -1.934 -3.463 -3.618 -74.251 0.119 0.079 0.114 0.122 0.036 0.038 0.402 0.00033 0.38 0.29 0.57 0.43 0.33	B -50.722 -4.472 -18.464 -8.002 -3.299 -9.925 -1.060 -1.689 -1.004 -98.637 0.094 0.073 0.057 0.131 0.070 0.063 0.043 0.306 0.000645 0.31 0.27 0.39 0.35 0.22	- -35.323 -3.394 -8.483 -6.819 -3.913 -0.735 -113.585 -357.588 0.151 0.114 0.061 0.093 0.071 0.003734 0.05 0.00 0.16 0.05 0.07	CP -44.862 4.724 -10.540 -0.006 -1.803 -0.352 -1.269 -0.810 0.064 0.094 0.201 0.153 0.132 0.053 0.082 0.00098 0.006 0.00 0.26 0.07	D -34.480 -4.038 -11.797 -8.854 -3.751 -5.395 -0.945 -1.855 -71.115 0.172 0.097 0.097 0.098 0.086 0.073 0.035 0.000272 0.15 0.03 0.38 0.13 0.19	b) Sensitiv A -41.450 0.673 -14.161 -1.645 -2.789 -2.818 -3.230 -3.128 -68.548 0.092 0.076 0.114 0.040 0.046 0.381 0.000248 0.42 0.27 0.61 0.46 0.39	ity B -39.067 -4.154 -14.464 -8.090 -2.624 -9.924 -1.117 -1.320 -0.872 -81.631 0.103 0.075 0.057 0.142 0.070 0.060 0.057 0.042 0.000612 0.36 0.32 0.41 0.28	- -34.492 -4.764 -7.155 -7.179 -4.777 -0.780 -113.764 -324.809 0.120 0.117 0.058 0.080 0.067 0.003095 0.14 0.01 0.29 0.12 0.16	CP -44.380 4.886 -10.517 -0.018 -1.937 -0.245 -1.412 -0.995 0.066 0.089 0.198 0.150 0.136 0.047 0.071 0.001024 0.08 0.00 0.25 0.07 0.09	D -26.724 -4.195 -9.700 -8.705 -3.230 -5.054 -1.100 -2.158 -60.866 0.180 0.099 0.061 0.108 0.091 0.064 0.028 0.00022 0.22 0.006 0.42 0.20 0.28

Table 2. Comparison of the uncertainty associated with key model results when using the full 2007 Reference Case assessment model as compared to a scenario in which the commercial CPUE and catch-at-age information from the last five years are excluded when fitting the model.

	a) Reference	e Case with CP	UE	b) No recent CPUE			
Parameter	Value 90% Confidence Interva		nce Interval	Value	90% Confidence Interva		
M _o	0.32	0.31	0.34	0.32	0.31	0.34	
M ₁₅	0.14	0.12	0.15	0.14	0.12	0.16	
$B(0)^{sp}(A)$	7385	5384	9387	9038	4491	13585	
$B(0)^{sp}(B)$	5754	5347	6161	5900	5328	6473	
$B(0)^{sp}(C)$	6991	6472	7510	6579	5969	7190	
$B(0)^{sp}(D)$	9173	6533	11814	10778	6146	15410	
$B(current)^{sp}(A)$	2842	1638	4045	3803	1085	6521	
$B(current)^{sp}(B)$	1757	1371	2143	2145	1287	3003	
$B(current)^{sp}(C)$	405	0	2089	629	394	863	
$B(current)^{sp}(D)$	1353	0	7453	2356	549	4162	
AddvarSTD σ_{Add}	0.40	0.29	0.52	0.38	0.26	0.50	

Fig. 1a. Total spawning biomass trajectories (inshore and offshore combined and shown in both absolute terms (top) and as a proportion of the pre-exploitation level (bottom)) for Zone A when a) **using the 2007 Reference Case model and b) when using a version of the model that assumes no commercial data were available for the past five years**. The shaded areas represent the associated Hessian-based 90% probability intervals. Projections assume future commercial catches are set to zero and that poaching levels in the future are fixed at half the current estimated level.

Fig. 1b. Total spawning biomass trajectories (inshore and offshore combined and shown in both absolute terms (top) and as a proportion of the pre-exploitation level (bottom)) for Zone B when a) **using the 2007 Reference Case model and b) when using a version of the model that assumes no commercial data were available for the past five years**. The shaded areas represent the associated Hessian-based 90% probability intervals. Projections assume future commercial catches are set to zero and that poaching levels in the future are fixed at half the current estimated level.

Fig. 2. Illustrative model results showing the uncertainty associated with estimates of the total numbers of abalone poached for years as shown for a-b) Zone A and c-d) Zone B when using the 2007 Reference Case model (left panels) and when using a version of the model that assumes no commercial data were available for the past five years (right panel). The shaded areas represent the associated Hessian-based 90% probability intervals.