Summary of the west coast rock lobster recreational fishery estimates

S.J. Johnston
MARAM
Department of Mathematics and Applied Mathematics
University of Cape Town
Rondebosch

Period 1991/92-2000/2001

The telephone surveys during this period were conducted by Decision Surveys International. Note no surveys were conducted in the 1995/96 and 1999/2000 seasons. Each season was broken into two-week survey stages. The number of stages, number of interviews per stage, and total number of interviews is as follows:

	Number of stages	Number of interviews per stage	Total number of interviews
$1991 / 92$	7	100	700
$1992 / 93$	17	70	1190
$1993 / 94$	14	70	980
$1994 / 95$	10	70	700
$1996 / 97$	12	70	840
$1997 / 98$	12	90	1080
$1998 / 99$	11	100	1100
$2000 / 01$	10	100	1000

Calculation of total recreational catch

Total volume per stage = number of permits sold x ave \# lobster removed per person per fortnight
Thus,
Total volume per stage = (\# permits x total \# lobsters removed by interviewees for that stage)/\# of interviewees in the sample for that stage

The total catch is then simple the addition of the catches over all the stages.
Estimate of variance associated with the total recreational catch estimate
The total recreational catch estimate is provided with the 95% confidence level (see Table 1). The method used to provide this CI is not provided.

Period 2001/02

This telephone survey as conducted by Lara Atkinson of Anchor Environmental Consultants CC, Department of Zoology, UCT.

The season was broken down into six interview stages. A total of 1500 interviews were conducted. Stages 2-6 had 184 interviews conducted, and 580 interviews were conducted for stage 1 .

Calculation of total recreational catch

Total volume per stage $\quad=$ (Adjusted number of permits sold x Total \# of rock lobster removed for that stage)/\# of interviewees sampled for that stage
where adjusted number of permits sold takes into the account that some for the fact that some permit holders may have purchased their permit at the start of the stage and had more time available to fish. The method employed was as follows:

Stage 1:

Dates for interviews 31 Jan-10 Feb; interview relating to period 22 Nov-31 Jan \# Permit sales for Oct (280) $+\operatorname{Nov}(20829)=21109$
$\begin{array}{cl}+\frac{3}{4} \# \text { permits sales for Dec }(24941) & =18705.75 \\ +\frac{1}{4} \# \text { permits sales for Jan }(5190) & =\underline{1297.5} \\ \text { Stage } 1 \text { adjusted permits soled } & =\underline{41112.25}\end{array}$

$$
=\underline{41112.25}
$$

Stage 2:

Dates for interviews $11 \mathrm{Feb}-13 \mathrm{Feb}$; interview relating to period 2-3 Feb and 9-10 Feb Total permits sold during Stage 1

$$
=50283
$$

$+\frac{1}{2}$ difference of permits sold between Stage 2 and Stage 1 (50960-50283)/2

$$
=\underline{338.5}
$$

$$
\text { Stage two adjusted permits sold } \quad=\overline{50621.5}
$$

Figures for the other stages were adjusted in a similar manner.

Estimate of variance associated with the total recreational catch estimate

The total recreational catch estimate is provided with the 95% confidence level (see Table 1). The method used to provide this CI is not provided.

Period 2003/04-2007/08

For the period covering the 2003/04-2007/08 seasons, a telephonic survey was carried out by Enviro-Fish Africa (Pty) Ltd. The method used to estimate the recreational catch for each season is as follows.

The recreational catch season was broken up into two-week periods (there would thus be between 7-11 survey periods each season, depending on the season length). About 150 phone interviews were conducted for each sample period. The total number of interviews each season is:

2003/04 = 1502
$2004 / 05=1054$
2005/06 = 1644
$2006 / 07=1498$
$2007 / 08=1336$

During an interview, the person was asked about their lobster fishing in the previous two-week period. The person was asked how many days they fished, and the total number of lobsters caught during this period. Other questions were also asked e.g. from what area did most lobsters come from.

Calculation of total recreational catch

$C_{\text {toald }}=c p u e x E_{\text {tooal }}$
where
$C_{\text {toatl }} \quad$ is the total recreational catch in numbers
cpue is mean CPUE (lobsters/fisher-day) over all four areal zones
$E_{\text {pooal }} \quad$ is the total effort (fisher-days)
$C_{\text {toald }}$ in numbers is converted to $C_{\text {toata }}$ in kgs by multiplying numbers by 0.345 kg .

Estimation of CPUE

Each person was asked how many lobsters they caught in the season (C) and how many fisher-days they used (E). A cpue for each person was then calculated as follows:

$$
\begin{equation*}
\text { срие }=\frac{C}{E} \tag{2}
\end{equation*}
$$

These cpue values were averaged for each of four Zones (Zones A, B, C and D). A mean value across all four zones was then used in equation (1).

Estimation of fishing effort $E_{\text {orat }}$

The estimation of fishing effort takes into account the increase in effort that occurs throughout the season - as recreational licences are sold throughout the fishing season, the number of fishers entering the fishery will increase as the season progresses. As such, the fishing effort is calculated individually for each sample period using the following equation:
$E_{i}=\left(\frac{e}{f s}\right) P$
where
$E_{i} \quad$ is the effort (in days) during survey period i,
$e \quad$ is the effort recorded by the interviewees during the sample period (in days),
$f_{s} \quad$ is the number of fishers interviewed during the survey period, and
$P \quad$ is the number of permits that have been issued at that point in the season.
P is calculated as:
$P=p_{i}+\left(\frac{i}{d_{m}} x d_{s}\right)$
where
$p_{i} \quad$ is the number of permits that have previously been issued during the season,
$i \quad$ is the number of permits issued in the month,
$d_{m} \quad$ is the days in the month, and
$d_{s} \quad$ is the number of days that are within the survey period.
Total fishing effort is then calculated as:

$$
\begin{equation*}
E_{\text {tooal }}=\sum_{i=1}^{n=10} E_{i} \tag{5}
\end{equation*}
$$

where
$E_{\text {otad }} \quad$ is the total seasonal fishing effort, and
$E_{i} \quad$ is the fishing effort during the two weekly sampling periods.

Estimate of variance associated with the total recreational catch estimate

For each season, the analysts provide the mean for all respondents from the final sample period of how many lobsters they had caught over the whole season. The SD of this figure is provided for the last two seasons only, where for both seasons the number of interviews in the last stage was 149 .

$$
\begin{aligned}
& 2003 / 04=11.54 \\
& 2004 / 05=12.04 \\
& 2005 / 06=9.8 \\
& 2006 / 07=28 \pm 23.8 \\
& 2007 / 08=20.1 \pm 15.5
\end{aligned}
$$

Obtaining a standard error of the mean based on the number of interviews for the last two seasons suggests CVs for the total takes per respondent and hence the estimate of total recreational catch to be:
$2006 / 07=0.104$
$2007 / 08=0.094$.

Summary Plots

Figures 1-3 provide plots of the number of permits sold in relation to the season length, and total recreational catches estimates in relation to permit sales and season length. There are no obvious trends in any of these plots.

Discussion

A key component of results from these surveys is the precision with which the total take is estimated.

For the earlier period of surveys this averages 7.5%, but no explanation of the method used is given in the reports. For the last two surveys this average is similar at 9.9%. What however concerns is that the earlier analyses apparently use all the data for this computation whereas the later use only data from the last set of interviews based on a much smaller sample. Why then are the CVs so similar?

Table 1: Summary of recreational catch estimates. Values in square parentheses show the 95% CI where available; the associated CV is given in round parentheses.

Season	Analyst	Total Catch estimate (kgs)	Total Catch estimate (\#s)	Mean cpue (lobsters/fisher/ day)	$\begin{gathered} E_{\text {total }} \\ \text { (fisher days) } \end{gathered}$	Total number of fishing days	Total number of permits sold
1991/92	DSI	159 229/205 931	419 286/541 923			$\begin{aligned} & 5 \text { months } \\ & \text { (150 days) } \end{aligned}$	44469
1992/93	DSI	$\begin{gathered} 469257(0.098) \\ {[379550 ; 558964]} \end{gathered}$	$\begin{gathered} 1360166(0.098) \\ 1100146 ; 1620186] \\ \hline \end{gathered}$			$\begin{gathered} 8 \text { months } \\ \text { (240 days) } \\ \hline \end{gathered}$	59202
1993/94	DSI	$\begin{gathered} 391137 \text { (0.058) } \\ {[346436 ; 435839]} \end{gathered}$	$\begin{gathered} 1133731(0.058- \\ {[1004161 ; 1263301]} \end{gathered}$			6.5 months (195 days)	57590
1994/95	DSI	$\begin{gathered} 336017(0.070) \\ {[289719 ; 382316]} \end{gathered}$	$\begin{gathered} 973963(0.070) \\ {[839764 ; 1018163]} \end{gathered}$			6.5 months (195 days)	54160
1996/97	DSI	$\begin{gathered} 495617(0.091) \\ {[407434 ; 583800]} \end{gathered}$	$1436571(0.091)$ $[1180968 ; 1692173]$			5.5 months (165 days)	65617
1997/98	DSI	$\begin{gathered} 339560(0.066) \\ {[295552 ; 383568]} \end{gathered}$	$\begin{gathered} 984233(0.066) \\ {[856673 ; 1111792]} \\ \hline \end{gathered}$			5.5 months (165 days)	44383
1998/99	DSI	$\begin{gathered} 258264(0.071) \\ {[222543 ; 293983]} \end{gathered}$	$\begin{gathered} 748591(0.071) \\ {[645054 ; 852127]} \end{gathered}$			5.5 months (165 days)	39982
2000/01	DSI	$\begin{gathered} 314169(0.071) \\ {[270679 ; 357660]} \end{gathered}$	$\begin{gathered} 910636(0.071) \\ {[784577 ; 1036695]} \end{gathered}$			146	47063
2001/02	Anchor	$\begin{gathered} 336964(0.115) \\ {[261088 ; 412841]} \end{gathered}$	$\begin{gathered} 976708(0.115) \\ {[756776 ; 1196640]} \end{gathered}$			91	53704
2003/04	Enviro	135053	391459	3.03	129409	78	$55077 *$
2004/05	Enviro	156408	453358	3.17	143015	107	28902
2005/06	Enviro	275063	797285	3.07	259702	99	47325
2006/07	Enviro	162092	469833	3.38	139004	108	34245
2007/08	Enviro	170676	494713	3.17	156061	80	42177

*Estimate based on previous three years - this value seems unlikely however, as it is bigger than all three previous seasons total number of permits sold?

Figure 1: Total \# permits sold in relation to the season length.

Figure 2: The recreational catch in relation to \# permits sold

Figure 3: Recreational catch in relation to season length.

