Computing proportions at length (and by sex) from catches in a stratum

Tracey Fairweather, Doug Butterworth, Rebecca Rademeyer, Rob Leslie

The following formulae were applied to the Merluccius capensis and M. paradoxus length frequency data collected during Demersal Abundance Estimate Surveys.

Sex independent

Required \tilde{P}_{l} : the proportion of length group l within the stratum where $\sum_{l} \tilde{P}_{l}=1$

Data

A total weight of W_{t}^{L} of large fish L is taken in trawl t.
A total weight of W_{t}^{S} of small fish S is taken in trawl t.
A total weight of W_{t}^{A} of all (i.e. not sorted by size) fish A is taken in trawl t.

A random subsample of weight w_{t}^{L} of large fish is taken and the length distribution of the fish measured yielding $n_{t, l}^{L}$ fish of length group $l ; w_{t}^{S}$ of small fish yields $n_{t, l}^{S}$ fish of length group l and w_{t}^{A} of all fish yields $n_{t, l}^{A}$ fish of length group l.

The estimated number of fish of length group l in the whole trawl is then given by:
$N_{t, l}=n_{t, l}^{L} \frac{W_{t}^{L}}{w_{t}^{L}}+n_{t, l}^{S} \frac{W_{t}^{S}}{w_{t}^{S}}+n_{t, l}^{A} \frac{W_{t}^{A}}{w_{t}^{A}}$
The proportion of fish in a trawl t of length group l is given by:
$P_{t, l}=N_{t, l} / N_{t}$ where $N_{t}=\sum_{l} N_{t, l}$

Then for the stratum as a whole, \tilde{P}_{l} is given by:
$\tilde{P}_{l}=\frac{\sum_{t} \alpha_{t, l} P_{t, l}}{\sum_{t} \alpha_{t, l}}$
Where $\alpha_{t, l}=n_{t, l}$ unless $n_{t, l} \geq 100$ in which case $\alpha_{t, l}=100$ and $\sum_{t} \alpha_{t, l}$ is the sum of these altered $n_{t, l}$ values.

Including sex information

For $l \leq 20$ (i.e. lengths to 20.99 cm) \tilde{P}_{l}^{j} is as above and refers to juveniles.
To split \tilde{P}_{l} for $l>20$ into males \tilde{P}_{l}^{m} and females \tilde{P}_{l}^{f}, ignore FOG (Frill on Gill parasite which renders fish "unsexable") data, thus assuming that FOG fish have the same sex ratio as healthy fish.

Data

For trawl t in length group l we sex $m_{t, l, m}^{L}$ males and $m_{t, l, f}^{L}$ females from the large fish, and similarly $m_{t, l, m}^{S}$ males and $m_{t, l, f}^{S}$ females from the small fish as well as $m_{t, l, m}^{A}$ males and $m_{t, l, f}^{A}$ females from the all fish for $l>20$.

$$
m_{t, l, m}^{L}+m_{t, l, f}^{L} \leq n_{t, l}^{L}
$$

Note: $\left.m_{t, l, m}^{S}+m_{t, l, f}^{S} \leq n_{t, l}^{S}\right\}$ because not every fish for which a length is measured is sexed.

$$
m_{t, l, m}^{A}+m_{t, l, f}^{A} \leq n_{t, l}^{A}
$$

The proportion of males in length group $l>20$ in trawl t is estimated by:

$$
q_{t, l}^{m}=\frac{m_{t, l, m}^{L} \frac{W_{t}^{L}}{w_{t}^{L}}+m_{t, l, m}^{S} \frac{W_{t}^{S}}{w_{t}^{S}}+m_{t, l, m}^{A} \frac{W_{t}^{A}}{w_{t}^{A}}}{\left(m_{t, l, m}^{L}+m_{t, l, f}^{L}\right) \frac{W_{t}^{L}}{w_{t}^{L}}+\left(m_{t, l, m}^{S}+m_{t, l, f}^{S}\right) \frac{W_{t}^{S}}{w_{t}^{S}}+\left(m_{t, l, m}^{A}+m_{t, l, f}^{A}\right) \frac{W_{t}^{A}}{w_{t}^{A}}}
$$

For the stratum as a whole for $l>20$ we split \tilde{P}_{l} into male and female proportions using $q_{t, l}^{m}$ and $q_{t, l}^{f}$

Results

The results are too extensive to present in hard copy. They are presented in an associated excel file named 2009-DEM73_LF_propotions.xls.

