Output and Alternatives from the South African Hake OMP-2006 for the 2009 TAC recommendation

R.A. Rademeyer and D.S. Butterworth
MARAM (Marine Resource Assessment and Management Group)
Department of Mathematics and Applied Mathematics
University of Cape Town, Rondebosch 7701, South Africa

February 2009

Abstract

The recommended TAC output from the South African hake OMP-2006 for 2009 is $\mathbf{1 1 8} \mathbf{5 7 8} \mathbf{t}$. If the west coast survey abundance estimates for 2008 were omitted, this output would change to $\mathbf{1 2 3} \mathbf{7 6 8} \mathbf{t}$; if such estimates for both 2007 and 2008 were omitted, the output would become $117450 \mathbf{t}$.

The 2009 TAC recommendation for the South African hake resource is computed in terms of the 2006 OMP (Rademeyer and Glazer, 2007) as follows:

$$
\begin{equation*}
C_{y}^{s p p}=C_{y-1}^{* s p p}\left[1+\lambda_{y}\left(s_{y}^{s p p}-\operatorname{target}^{s p p}\right)\right] \tag{1}
\end{equation*}
$$

The computations input a TAC of 130500 thousand tons for 2008. As specified in the OMP, this is disaggregated by species assuming the 2007 species-split of the catches, i.e. 80.98% (105 672 t) M. paradoxus and 19.02% (24826 t) M. capensis to provide the $C_{y-1}^{* s p p}$ values for equation (1).

The GLM-standardised CPUE series (Glazer, 2008) and survey biomass abundance estimates (Leslie, 2008) used as inputs to the OMP are shown in Table 1 and the resulting trends in Fig. 1. Note that the results from surveys carried out with the Africana with new gear have been rescaled to take the calibration factor into account (this involves dividing new gear estimates by 0.95 for M. paradoxus and 0.80 for M. capensis), as specified in the OMP (Rademeyer and Glazer, 2007); the 'true' estimates are shown in parenthesis in Table 1.

The recent annual trend, s_{y}, computed from a specified weighted average of the CPUE and survey slopes (0.5 for CPUE and 0.25 for each survey), is -0.96% for M. paradoxus and -13.44% for M. capensis.

From equation $4\left(\lambda_{y}=\left\{\begin{array}{cl}0.06(y-2006)+0.5 & \text { if } s_{y}>0 \\ -0.09(y-2006)+2.0 & \text { if } s_{y} \leq 0\end{array}\right)\right.$ of Rademeyer and Glazer (2007):
$\lambda_{2009}= \begin{cases}0.68 & \text { if } s_{y}>0 \\ 1.73 & \text { if } s_{y} \leq 0\end{cases}$
Thus the M. paradoxus contribution to the TAC is:

$$
C_{2009}^{\text {para }}=105672 t[1+1.73(-0.96 \%-2.4 \%)]=99526 t
$$

and the M. capensis contribution:

$$
C_{2009}^{c a p}=24826 t[1+1.73(-13.44 \%-0 \%)]=19052 t
$$

The total 2009 TAC output from the OMP is therefore $118 \mathbf{5 7 8} \mathbf{t}$. This is 9.14% less than the 2008 TAC of 130500 t , and so is not impacted by the OMP constraint that TACs not change by more than 10% per year.

If data from the 2008 west coast survey are omitted, the TAC output would be 123768 t ; if data for both the 2007 and 2008 west coast surveys are omitted, the TAC output would be 117450 t (the 10% minimum TAC decrease constraint having come into play). Fig. 1 also includes the fitted trends under these two alternative sets of choices.

References

Glazer J.P. 2008. Offshore M. capensis and M. paradoxus CPUE indices and catches for input to the OMP for setting the 2009 TAC. Unpublished report, MCM, South Africa. MCM/2008/NOV/SWG-DEM/ . 6pp.

Leslie R.W and Fairweather T. 2008. Hake survey abundance estimates for the period 1986-2008. Densities extrapolated to the whole shelf and to trawlable grids only. Unpublished report, MCM, South Africa. MCM/2008/AUG/SWG-DEM/40. 8pp.

Rademeyer R.A. and Glazer J.P. 2007. The 2006 Operational Management Procedure for the South African Merluccius paradoxus and M. capensis resources. Unpublished report, MCM, South Africa. 2007:WG-Dem:H:1. 18pp.

Table 1: GLM-standardised CPUE series and west coast summer and south coast autumn survey abundance estimates used as input in the 2009 TAC computation. Note that the abundance estimates in bold incorporate the calibration factors agreed for OMP application as they are for surveys in which the new gear was used on the Africana. The values in parentheses are the actual estimates obtained from the surveys.

	M. paradoxus					M. capensis				
	GLMstandardised CPUE	West coast summer		South coast autumn		GLM- standardised CPUE	West coa	summer	South co	st autumn
2002	4.902					4.904				
2003	5.778	405.457		108.845		4.717	74.771		128.152	
2004	5.626	273.694	(259.57)	58.888	(55.85)	4.024	257.433	(205.98)	128.838	(103.09)
2005	5.438	297.339	(281.99)	27.240	(25.83)	3.234	89.077	(71.27)	96.267	(77.03)
2006	5.388	313.456		35.038		2.983	88.357		132.202	
2007	5.766	421.675	(399.91)	156.955	(148.85)	1.557	102.473	(81.99)	87.680	(70.15)
2008		260.022	(246.60)	41.639	(39.49)		63.597	(50.89)	134.922	(107.95)

Fig. 1: Recent trends in the GLM-standardised CPUE and survey abundance indices for M. paradoxus and M. capensis which are used in the TAC computation. The survey abundance estimates shown incorporate the calibration factors specified in the OMP for the years in which the new gear was used on the Africana.

