# Extensions to SCAA Applications Reported in: <br> "Further Applications of Statistical Catch-at-Age Assessment Methodology to the 2J3K-O Greenland Halibut Resource" 

Doug S. Butterworth and Rebecca A. Rademeyer
May 2009


#### Abstract

Summary

This document reports refinements to the survey-based SCAA assessments reported at an earlier meeting in Vigo, and attempts to provide results for the set of future analyses requested there. Particular attention has been paid to attempting to reduce the residual patterning evident in earlier assessments through taking further account of serial correlation. These efforts seem to have been reasonably successful for the overall survey indices and commercial catch-at-age proportions, but less so for the survey catch-at-age proportions, which consequently remain somewhat overweighted in the fitting process. A simpler agestructured production model is also fitted to the data, and gives similar results to the New Baseline SCAA assessment that is developed, with Bayesian estimates of precision computed for both these approaches. Despite these efforts to incorporate serial correlation, some conflict remains amongst the different sets of input data, and partly in consequence the absolute scale of biomass is poorly determined by assessments. The most pessimistic (in stock status terms) of the SCAA variants considered produce biomass estimates that do not differ that greatly from those from XSA. Importantly however, even in those cases the SCAA assessments provide results for recent years more in line with survey index (and CPUE) trends, and give more positive projections for future abundance: for example all SCAA projections under a constant TAC of 22750 tons increase, whereas XSA projects a decrease in those circumstances.


## Introduction

This paper continues the development of the application of Statistical Catch-at-Age (SCAA) methodology to the $2 \mathrm{~J} 3 \mathrm{~K}-\mathrm{O}$ Greenland halibut resource beyond the results presented in Butterworth and Rademeyer (2009a). Updates include:

1) Taking the modelled population age structure to a plus-group age of 20 rather than 14 so that any decreasing selectivity trend continues to a larger age. For the commercial selectivity, the estimated decrease from ages 11 to 12 are assumed to continue exponentially to age $20+$. Similarly for the survey selectivities, the estimated decrease from ages 10 to 11 ( 7 to 8 for the Canadian spring survey) is assumed to continue exponentially to age $20+$.
2) The inclusion of correlation, in both year and age, in survey proportions-at-age data. Butterworth and Rademeyer (2009a) noted the non-randomness of the residuals for the fits of the survey proportions-at-age data. To allow for serial correlation between the survey proportion-at-age residuals, equation B21 of Butterworth and Rademeyer (2009b) is replaced by:
$-\ell \mathrm{n} L^{C A A}=\sum_{i=1}^{n_{\text {surv }}}\left\{\begin{array}{l}\sum_{y=2}^{n} \sum_{a=a_{\text {min } u s}+1}^{a_{\text {plus }}}\left[\ln \left(\sigma_{\text {surv }}^{i} / \sqrt{p_{y, a}^{i}}\right)+p_{y, a}^{i}\left(\eta_{y, a}^{i}\right)^{2} / 2\left(\sigma_{\text {surv }}^{i}\right)^{2}\right] \\ +\sum_{a=a_{\text {min } u s}}^{a_{\text {plus }}}\left(\sum_{y=1}^{n} p_{y, a}^{i}-\sum_{y=1}^{n} p_{y, a}^{i}\right)^{2}\end{array}\right\}$
with

$$
\begin{align*}
\eta_{y, a}^{i} & =\left(\varepsilon_{y, a}^{i}-\rho_{C A A a g e}^{i} \varepsilon_{y, a-1}^{i}\right)-\rho_{C A A y r}^{i}\left(\varepsilon_{y-1, a}^{i}-\rho_{C A A a g e}^{i} \varepsilon_{y-1, a-1}^{i}\right)  \tag{2}\\
\varepsilon_{y, a}^{i} & =\sqrt{p_{y, a}^{i}}\left(\ln p_{y, a}^{i}-\ln \hat{p}_{y, a}^{i}\right) \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
\hat{\sigma}_{s u r v}^{i}=\sqrt{\sum_{y} \sum_{a} \eta_{y, a}^{2} / \sum_{y} \sum_{a} 1} \tag{4}
\end{equation*}
$$

$\rho_{\text {CAAage }}^{i} \quad$ is the age serial correlation coefficient for survey series $i$, which is estimated, and
$\rho_{C A A y r}^{i} \quad$ is the year serial correlation coefficient for survey series $i$, which is estimated.
The second term in the likelihood has been added so that the average predicted proportion-at-age is close to that observed. This is necessary here because taking account of serial correlation loses the information otherwise in the likelihood to fit to data for the youngest age-class.

## Results

## New Baseline

Extending the model to age 20 (compared to 14 in Rademeyer and Butterworth, 2009a) has little effect on the results (Case 1, Table 1). Residual patterns for the survey catch-at-age data are improved by allowing for serial correlation in both age and year as described above (Cases 2 and 3, Table 1). For both the age and the year serial correlations, a series specific correlation parameter is warranted in terms of AIC. These two specifications provide the basis for a revised baseline assessment (Case 4, "New Baseline"). Fig. 1 compares the biomass trajectories estimated for Cases 1 to 4, while the standardised residual patterns for the fits to the survey catch proportions-at-age for these four cases are shown in Fig. 2.

Figs 3-5 show results for the New Baseline, respectively the survey and commercial (average) selectivities, the fit to the survey abundance indices and the corresponding survey standardised residuals. The estimated numbers-at-age and fishing mortalities matrices are shown in Tables 8 and 9 respectively.

As previous assessments presented in Rademeyer and Butterworth (2009a), the New Baseline includes serial correlation in the survey abundance indices. The serial correlation parameter is not series specific as it is not warranted in terms of AIC criteria (Case 5, Table 1). Introduction of serial correlation does improve the randomness of the residuals (see Fig.5).

## Variation in assumptions concerning the stock-recruitment relationship

Table 2 shows sensitivities to a number of variations in the New Baseline assumptions of a BevertonHolt stock recruitment function with steepness $h=0.9$ and recruitment variability set on input to $\sigma_{R}=$ 0.2 . First lower values of $h$ are considered. Next a refinement of the Ricker form is considered which can also produce shapes similar to Beverton-Holt, as described in Butterworth and Rademeyer (2009a). This is implemented estimating both $h$ and $\gamma$. Finally $\sigma_{R}$ is set to 0.3 . The resulting stock-recruitment curves, and time series of standardised stock-recruitment residuals and recruitment are shown in Fig. 6, while the biomass trajectories are shown in Fig. 7.

## Variation in assumptions concerning the annual catches and commercial selectivity

Table 3 shows sensitivities to the 1990-1994 annual catch assumptions, as well as assumptions concerning the commercial selectivity. Fig. 8 plots the biomass trajectories for these four sensitivities. Fig. 9 compares the commercial selectivity estimated for the New Baseline, the XSA assessment and Case 10 with flat selectivity from age 10 . To coincide with known changes in the operation or regulation of the fishery, an alternative commercial selectivity is considered in Case 11. The selectivity is divided into four periods (1960-1987, 1989-1995, 1996-2003, 2007-2008), with linear trends between the periods. The selectivity estimated for each period is shown in Fig. 10.

## Sensitivities on the extent of selectivity variation

Cases 12a-c in Table 4 investigate the effect of changing the extent of selectivity variation, first in the commercial selectivity (more and less variation allowed in 12a and 12 b respectively) and then in the survey selectivities ( $\sigma_{\Omega}$ increased to 1 in 12c). Fig. 11 compares the biomass trajectories and Fig. 12 the standardised residuals for the commercial and survey proportions-at-age.

## Sensitivities on the extent of natural mortality

Case 13 fixes the natural mortality to 0.15 instead of 0.2 in the New Baseline assessment (Table 4). The biomass trajectories are shown in Fig. 13.

## Start in 1975 with data as in XSA

Cases 14a-c use the same data in fitting as used in the current XSA, i.e. excluding the pre-1995 Canadian fall survey information (biomass index and catch-at-age data) and the pre-1995 EU survey index. In 14a, the model starts in 1960 assuming unexploited equilibrium (as in the New Baseline) and is brought forward under the annual catches. Stock-recruitment residuals are estimated from 1975 onwards. In 14b, the model starts in 1975 and $\theta$ and $\varphi$ are estimated; while in 14 c , the XSA estimated proportions-at-age in 1975 are used as input and $\theta$ is estimated. Results for these three sensitivities are shown in Table 4, while the biomass trajectories are compared in Fig. 14.

The estimated numbers-at-age and fishing mortalities matrices are shown in Tables 10 and 11 respectively for 14 a .

## Retrospective assessments

The results of retrospective assessments for the New Baseline are shown in Table 6 and Fig.16.

## Production-type model

Table 7 gives results of two production-type models with no stock-recruitment variations and no variations in selectivities. These models nevertheless have to be age-structured as account has to be taken of the different age "ranges" to which catches and the various surveys correspond. Case 1 fits to both survey indices and commercial and survey proportions-at-age, and selectivities are estimated, though with $h$ fixed at 0.9 as otherwise parameter estimation becomes confounded. The purpose of this exercise is merely to estimate the selectivities at values which can be fixed when $h$ is freed. Case 2 fits to the survey indices only and the selectivities are fixed to the values estimated in Case 1. Fig. 15 compares the biomass trajectories for production-type model 2, the New Baseline and the XSA.

Key results are summarised for the XSA, the New Baseline and all the sensitivities to this assessment, and the Production-type Model 2 in Table 12.

## Projections results

20-year biomass projections for the New Baseline are plotted in Fig. 17 under a series of catch scenarios: three constant catch ( 0,16000 t and 22750 t) and a F0. 1 strategy. The constant catch projections of 16000 t and 22750 t are compared across four models in Fig. 18: the New Baseline, a more pessimistic SCAA (Case 14a, start in 1975), the Production-type Model 2 and XSA.

The catches expected under the F0.1 strategy for the New Baseline, Case 14a and the Production-type Model 2 are plotted in Fig. 19. The reason for the sharp initial peak in estimates of the F0.1 strategy TAC for the New Baseline SCAA and the production model 2 is that both these assessments estimate current biomass to be appreciably above the MSY level, so that TACs are set with the intent to decrease current abundance.

## MCMC results

For the New Baseline and the Production-type Model 2, MCMC has been used to compute posterior distributions. The contribution from equations B25 and B27 in Rademeyer and Butterworth (2009b) then correspond to priors on the distribution of the recruitment and selectivity residuals respectively. Other priors on the parameters ( $K^{s p}$, the serial correlation parameters and the selectivity parameters) are taken to be uniform over wide and/or feasible ranges with the intent that they be uninformative.

The initial parameter vector used to start the MCMC computational process was the mode of the posterior. The chain was "thinned" by taking every $1000^{\text {th }}$ value in the chain, and the results of the first
one million iterations were discarded to allow for a "burn-in" period. A chain of 10 million iterations (including the burn-in period) was run.

Tables 14 and 15 compare the Maximum Likelihood Estimate (MLE), the median and $90 \%$-iles for the New Baseline and the Production-type Model 2 respectively. The simple approach of comparing results for the first and second halves of the parts of the chains retained showed little difference, broadly suggesting that the chain was sufficiently long to achieve convergence.

Note that the treatments of the SCAA and the production model in this assessment of estimation precision have differed. For the SCAA the steepness parameter $h$ was fixed at 0.9 , consistent with most other SCAA variants for which results are reported here, whereas $h$ was treated as an estimable parameter (with an uninformative prior) for the production model MCMC Bayesian computations. In retrospect, it is evident that as the value of $h$ has an important influence on values of some other quantities of importance to management, it might have been better to include $h$ as an estimable parameter with a prior in the SCAA Bayesian computations, but there was insufficient time to do this.

## Discussion

Some key features of the results are as follows.
In Table 1 the selection of the New Baseline assessment was determined by the best AIC. It is important though to note that taking account of further serial correlation has the effect of decreased precision (larger Hessian-based CVs) for the resultant estimates.

Table 2 shows that the negative log likelihood does not increase very much for lower values of steepness $h$, and these in turn reflect greater extents of depletion. Together with that, however, comes a poorer fit to the survey series. In contrast, if recruitment variability is increased, abundance estimates also increase.

Tables 3 and 4 show that a lower value of $M$, or a decrease in 1990-94 catches leads to greater extents of depletion estimates, but that the reverse holds if the extent permitted of variation permitted for selectivity is increased. Assuming asymptotically flat selectivity does not lead to an especially pessimistic appraisal as in earlier work, but this flat level estimated is rather low, and so still suggests a large cryptic component of the biomass.

Omission of pre-1975 data leads (Table 5) to much greater estimates for the extent of depletion. Additional analyses (not shown here) indicate that it is chiefly the inclusion or otherwise of the pre1995 Canadian fall CAA that determines whether or not the estimated extent of depletion of the halibut resource is large. Although these Table 5 results for abundance are quite close to those from the XSA in absolute terms, they also show very different behaviour close to the end of the assessment period, with their estimated biomass trends more positive than for XSA.

Table 6 yields a preferred production model assessment (model 2) with results similar to those of the New Baseline SCAA assessment. However the Hessian-based CV's for the production model are rather high, probably because this model treats $h$ as an estimable parameter, whereas the SCAA fixes $h$. This qualitative comparison is borne out by the corresponding Bayesian results shown in Tables 12 and 13.

For the retrospective analysis, aside from a more negative appraisal for the assessment with only the most recent year's data removed, the plots in Fig. 16 are very consistent and provide no indication of any systematic pattern

## In summary

The most important (and problematic) feature of the assessment of this Greenland halibut resource is the conflict between trends in the survey indices of abundance (or equally the CPUE) and information contained in the catch-at-age proportions for the surveys. The former fit better with an appraisal of a relatively large resource which is not substantially depleted below its pre-exploitation level, while the latter suggest the opposite. It is very evident for all variants where the SCAA suggests a highly depleted resource that the $-\operatorname{lnL}$ contribution from the survey indices deteriorates to an important extent.
Our efforts have concentrated particularly on trying to take due account of serial correlation in these data to discover whether this removes this conflict, to provide more correct relative weighting of the contributions of these two data sources to the negative log likelihood, and to provide a more defensible
basis for estimates of precision such as Bayesian probability intervals. In this regard (and these are matters of relevance also to VPA approaches) we have been only partially successful. Our sense is that we have adequately accounted for serial correlation in the time trends of the survey indices and the commercial catch-at-age proportions, but only partially so for the survey catch-at-age proportions. This then suggests that in a statistical context our computations reflect an over-weighting of the survey catch-at-age proportions, and with that results for resource status that are negatively biased to some extent.

It is unsurprising that there is a wide range of absolute biomass scale across the various SCAA variants reported, as the conflict indicated would contribute to such an effect. Our view is that for more reliable results priority in assessments should first be given to having models fit the trends in indices of overall abundance, provided due account is taken of serial correlation effects and attention given to possible non-comparability over time.

The most pessimistic (in stock status terms) of the SCAA variants reported produce biomass estimates that do not differ that greatly from those from XSA. Importantly however, even in those cases the SCAA assessments provide results for recent years more in line with survey index (and CPUE) trends, and give more positive projections for future abundance: for example all SCAA projections under a constant TAC of 22750 tons increase, whereas XSA indicates a decrease.

## References

Butterworth DS and Rademeyer RA. 2009a. Further applications of Statistical Catch-at-Age Assessment methodology to the $2 \mathrm{~J} 3 \mathrm{~K}-\mathrm{O}$ Greenland Halibut resource.
Butterworth DS and Rademeyer RA. 2009b. Initial applications of Statistical Catch-at-Age assessment methodology to the Greenland Halibut resource.
Healey BP and Mahé J-C. 2008. An assessment of Greenland halibut (Reinhardtius hippoglossoides) in NAFO Subarea 2 and Divisions 3KLMNO. NAFO SRC Doc. 08/48, Ser. No N5550.

Table 1: Results of fits of various SCAA variants to the commercial catch and survey data compared to the Baseline assessment B2 of Butterworth and Rademeyer (2009a). Biomass units are '000t. Values fixed on input rather than estimated are shown in bold. Quantities shown in parenthesis are Hessian-based CVs. -lnL values in parenthesis are for repeating case 1) but fitting to the same number of data points as the sensitivity concerned (see text for details).

|  | Baseline B2 (Rademeyer and Butterworth, 2009a) |  |  | 1) As B2 but max age $=20$ and with extra - $\ln \mathrm{L}^{\mathrm{CAA}}$ summation |  |  | 2) As 1) with serial correlation in age for the survey CAA |  |  | 3) As 1) with serial correlation in year for the survey CAA |  |  | 4) as 1) serial correlation by age and year for the survey CAA New Baseline |  |  |  | 5) as New Baseline (NB) with a survey $\rho$ for each series |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No of parameters No of data points | $\begin{gathered} \hline 503 \\ 1024 \end{gathered}$ |  |  | $\begin{gathered} \hline 503 \\ 1024 \end{gathered}$ |  |  | $\begin{aligned} & 507 \\ & 965 \end{aligned}$ |  |  | $\begin{aligned} & 511 \\ & 977 \end{aligned}$ |  |  | $\begin{aligned} & \hline 515 \\ & 924 \\ & \hline \end{aligned}$ |  |  |  | $\begin{aligned} & 518 \\ & 924 \\ & \hline \end{aligned}$ |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| '-lnL:overall | -500.4 |  |  | -498.2 |  |  | -573.2 | -(516.8) |  | -525.3 | -(476.0) |  | -602.2 | -(497.4) |  |  | -603.2 |  |  |  |
| '-lnL:Survey | -49.3 |  |  | -49.4 |  |  | -49.0 | -(47.3) |  | -46.9 | -(49.9) |  | -47.1 | -(48.1) |  |  | -49.4 |  |  |  |
| '-lnL:CAA | -225.0 |  |  | -224.5 |  |  | -216.3 | -(223.1) |  | -226.4 | -(227.5) |  | -220.2 | -(226.5) |  |  | -220.3 |  |  |  |
| '-lnL:CAAsurv | -367.2 |  |  | -367.8 |  |  | -423.2 | -(376.8) |  | -438.4 | -(338.0) |  | -478.2 | -(350.3) |  |  | -478.9 |  |  |  |
| '-lnL:RecRes | 30.1 |  |  | 30.0 |  |  | 23.9 | (26.2) |  | 31.6 | (29.8) |  | 23.0 | (26.0) |  |  | 24.1 |  |  |  |
| '-lnL:SelPen | 111.1 |  |  | 113.5 |  |  | 91.4 | (104.3) |  | 154.7 | (109.6) |  | 120.4 | (101.5) |  |  | 121.3 |  |  |  |
| $h$ | 0.90 |  |  | 0.90 |  |  | 0.90 |  |  | 0.90 |  |  | 0.90 |  |  |  | 0.90 |  |  |  |
| $\theta$ | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |  | 1 |  |  |  |
| $\phi$ | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  | 0 |  |  |  | 0 |  |  |  |
| $\rho$ - surveys | 0.63 |  |  | 0.63 |  |  | 0.62 |  |  | 0.67 |  |  | 0.65 |  |  |  | 0.24 | 0.59 | 0.78 | 0.69 |
| $\rho_{\text {CAAage }}$ | 0 |  |  | 0 |  |  | 0.64 | 0.14 | 0.150 .30 | 0 |  |  | 0.70 | 0.24 | 0.24 | 0.38 | 0.70 | 0.25 | 0.23 | 0.37 |
| $\rho_{\text {CaAyr }}$ | 0 |  |  | 0 |  |  | 0 |  |  | -0.20 | -0.78 | $\begin{array}{lll}-0.28 & -0.51\end{array}$ | -0.35 | -0.73 | -0.25 | -0.53 | -0.36 | -0.73 | -0.25 | -0.54 |
| $K^{s p}$ | 576 | (0.19) |  | 601 | (0.20) |  | 687 | (0.29) |  | 598 | (0.23) |  | 596 | (0.27) |  |  | 645 | (0.29) |  |  |
| $B^{s p}{ }_{2008}$ | 372 | (0.42) |  | 402 | (0.42) |  | 497 | (0.53) |  | 371 | (0.50) |  | 353 | (0.60) |  |  | 412 | (0.58) |  |  |
| $B^{s p}{ }_{2008} / K$ | 0.65 | (0.24) |  | 0.67 | (0.23) |  | 0.72 | (0.25) |  | 0.62 | (0.28) |  | 0.59 | (0.34) |  |  | 0.64 | (0.30) |  |  |
| MSYL ${ }^{\text {sp }}$ | 0.17 | (0.62) |  | 0.17 | (0.12) |  | 0.17 | (0.12) |  | 0.17 | (0.14) |  | 0.17 | (0.15) |  |  | 0.17 | (0.14) |  |  |
| $B^{S P}$ MSY | 100 | (0.68) |  | 101 | (0.30) |  | 115 | (0.38) |  | 100 | (0.35) |  | 100 | (0.41) |  |  | 108 | (0.41) |  |  |
| MSY | 43 | (0.18) |  | 44 | (0.19) |  |  | (0.28) |  | 44 | (0.22) |  | 43 | (0.26) |  |  | 47 | (0.28) |  |  |
| $\sigma_{\text {comCAA }}$ | 0.07 |  |  | 0.07 |  |  | 0.07 |  |  | 0.07 |  |  | 0.07 |  |  |  | 0.07 |  |  |  |
| Survey | $q$ 's $\times 10^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcas }}$ | $q$ 's x $10^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcai }}$ | $q$ 's x $10{ }^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcai }}$ | $q$ 's x $10{ }^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcai }}$ | $q$ 's x $10^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcAA }}$ |  | $q$ 's x10 ${ }^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surca }}$ |  |
| CanFall | 118 | 0.29 | 0.06 | 116 | 0.29 | 0.06 | 97 | 0.29 | 0.04 | 120 | 0.29 | 0.06 | 116 | 0.29 | 0.04 |  | 106 | 0.27 | 0.04 |  |
| CanFall2 | 197 | 0.15 | 0.05 | 189 | 0.15 | 0.05 | 176 | 0.15 | 0.03 | 199 | 0.18 | 0.03 | 213 | 0.17 | 0.02 |  | 196 | 0.17 | 0.02 |  |
| EU | 69290 | 0.29 | 0.07 | 67058 | 0.29 | 0.07 | 56604 | 0.29 | 0.06 | 68255 | 0.29 | 0.06 | 67945 | 0.29 | 0.06 |  | 62109 | 0.29 | 0.06 |  |
| CanSpr | 11 | 0.39 | 0.05 | 10 | 0.39 | 0.05 | 9 | 0.40 | 0.05 | 11 | 0.40 | 0.04 | 11 | 0.40 | 0.05 |  | 10 | 0.40 | 0.05 |  |
| $\sigma_{R_{-} \text {out }}$ | 0.22 |  |  | 0.22 |  |  | 0.20 |  |  | 0.23 |  |  | 0.20 |  |  |  | 0.20 |  |  |  |

Table 2: Results of fits of various SCAA variants related to aspects of the stock-recruitment relationship assumed (see text for details) to the commercial catch and survey data, compared to the New Baseline assessment. Biomass units are ' 000 t . Values fixed on input rather than estimated are shown in bold. Quantities shown in parenthesis are Hessian-based CVs (note cases 6 b and 8 have not fully converged so that Hessian-based CVs are not available).

|  | New Baseline |  |  |  | 6a) $h=0.7$ |  |  |  | 6b) $h=0.5$ |  |  |  | 7) Ricker like ( $h$ and $\gamma$ estimated) |  |  |  | 8) $\sigma_{R}=0.3$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No of parameters | $\begin{aligned} & 515 \\ & 924 \end{aligned}$ |  |  |  | $\begin{aligned} & 515 \\ & 924 \end{aligned}$ |  |  |  | $\begin{aligned} & 515 \\ & 924 \end{aligned}$ |  |  |  | $\begin{aligned} & 517 \\ & 924 \end{aligned}$ |  |  |  | $\begin{aligned} & 515 \\ & 924 \end{aligned}$ |  |  |  |
| No of data points |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| '-lnL:overall | -602.2 |  |  |  | -601.4 |  |  |  | -601.2 |  |  |  | -605.1 |  |  |  | -618.0 |  |  |  |
| '-lnL:Survey | -47.1 |  |  |  | -47.7 |  |  |  | -45.2 |  |  |  | -41.6 |  |  |  | -49.5 |  |  |  |
| '-lnL:CAA | -220.2 |  |  |  | -220.2 |  |  |  | -218.5 |  |  |  | -215.1 |  |  |  | -221.6 |  |  |  |
| '-lnL:CAAsurv | -478.2 |  |  |  | -476.4 |  |  |  | -479.2 |  |  |  | -486.4 |  |  |  | -482.7 |  |  |  |
| '-lnL:RecRes | 23.0 |  |  |  | 22.9 |  |  |  | 23.4 |  |  |  | 23.4 |  |  |  | 16.1 |  |  |  |
| '-lnL:SelPen | 120.4 |  |  |  | 120.0 |  |  |  | 118.4 |  |  |  | 114.6 |  |  |  | 119.8 |  |  |  |
| $h$ | 0.90 |  |  |  | 0.70 |  |  |  | 0.50 |  |  |  | 0.64 |  |  |  | 0.90 |  |  |  |
| $\theta$ | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| $\phi$ | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| $\rho$ - surveys | 0.65 |  |  |  | 0.64 |  |  |  | 0.65 |  |  |  | 0.65 |  |  |  | 0.63 |  |  |  |
| $\rho_{\text {CAAage }}$ | 0.70 | 0.24 | 0.24 | 0.38 | 0.70 | 0.25 | 0.24 | 0.38 | 0.69 | 0.24 | 0.24 | 0.37 | 0.68 | 0.24 | 0.24 | 0.35 | 0.71 | 0.23 | 0.22 | 0.37 |
| $\rho_{\text {Caiyr }}$ | -0.35 | -0.73 | -0.25 | -0.53 | -0.36 | -0.73 | -0.24 | -0.53 | -0.36 | -0.73 | -0.26 | -0.54 | -0.38 | -0.74 | -0.29 | -0.55 | -0.35 | -0.74 | -0.26 | -0.54 |
| $K^{s p}$ | 596 | (0.27) |  |  | 611 | (0.27) |  |  | 542 | * |  |  | 431 | (0.10) |  |  | 897 | * |  |  |
| $B^{s p}{ }_{2008}$ | 353 | (0.60) |  |  | 342 | (0.67) |  |  | 169 | * |  |  | 44 | (0.38) |  |  | 703 | * |  |  |
| $B^{s p}{ }_{2008} / K$ | 0.59 | (0.34) |  |  | 0.56 | (0.40) |  |  | 0.31 | * |  |  | 0.10 | (0.33) |  |  | 0.78 | * |  |  |
| MSYL ${ }^{\text {sp }}$ | 0.17 | (0.15) |  |  | 0.28 | (0.13) |  |  | 0.37 | * |  |  | 0.26 | (0.22) |  |  | 0.17 | * |  |  |
| $B^{s p}$ MSY | 100 | (0.41) |  |  | 170 | (0.39) |  |  | 202 | * |  |  | 113 | (0.17) |  |  | 150 | * |  |  |
| MSY | 43 | (0.26) |  |  | 33 | (0.26) |  |  | 21 | * |  |  | 22 | (0.13) |  |  | 64 | * |  |  |
| $\sigma_{\text {comCAA }}$ | 0.07 |  |  |  | 0.07 |  |  |  | 0.07 |  |  |  | 0.07 |  |  |  | 0.07 |  |  |  |
| Survey | $q$ 's x $10{ }^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcha }}$ |  | $q$ 's x $10{ }^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcAA }}$ |  | $q$ 's x10 ${ }^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcAA }}$ |  | $q$ 's $\times 10^{6}$ | $\sigma_{\text {sury }}$ | $\sigma_{\text {surcAA }}$ |  | $q$ 's $\times 10^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcha }}$ |  |
| CanFalll | 116 | 0.29 | 0.04 |  | 116 | 0.29 | 0.04 |  | 142 | 0.30 | 0.04 |  | 187 | 0.31 | 0.04 |  | 81 | 0.28 | 0.04 |  |
| CanFall2 | 213 | 0.17 | 0.02 |  | 228 | 0.16 | 0.02 |  | 334 | 0.15 | 0.02 |  | 450 | 0.15 | 0.02 |  | 137 | 0.16 | 0.02 |  |
| EU | 67945 | 0.29 | 0.06 |  | 69465 | 0.30 | 0.06 |  | 96177 | 0.34 | 0.06 |  | 138111 | 0.39 | 0.06 |  | 44456 | 0.28 | 0.06 |  |
| CanSpr | 11 | 0.40 | 0.05 |  | 12 | 0.39 | 0.05 |  | 17 | 0.39 | 0.05 |  | 22 | 0.40 | 0.05 |  | 7 | 0.40 | 0.05 |  |
| $\sigma_{R_{-} \text {out }}$ | 0.20 |  |  |  | 0.20 |  |  |  | 0.20 |  |  |  | 0.20 |  |  |  | 0.25 |  |  |  |

Table 3: Results of fits of various SCAA variants related to aspects of the commercial catches and selectivity (see text for details) to the commercial catch and survey data, compared to the New Baseline assessment. Biomass units are ' 000 t. Values fixed on input rather than estimated are shown in bold. Quantities shown in parenthesis are Hessian-based CVs.

|  | New Baseline |  |  |  | 9a) 1990-1994 catches increased by 10000 t |  |  |  | 9b) 1990-1994 catches decreased by 10000 t |  |  |  | 10) Flat commercial selectivity from age 10 |  |  |  | 11) Four commercial selectivity periods |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No of parameters No of data points | $\begin{aligned} & 515 \\ & 924 \end{aligned}$ |  |  |  | $\begin{aligned} & 515 \\ & 924 \end{aligned}$ |  |  |  | $\begin{aligned} & 515 \\ & 924 \\ & \hline \end{aligned}$ |  |  |  | $\begin{array}{r} 514 \\ 924 \\ \hline \end{array}$ |  |  |  | $\begin{aligned} & 533 \\ & 924 \end{aligned}$ |  |  |  |
| '-lnL:overall | -602.2 |  |  |  | -601.4 |  |  |  | -608.7 |  |  |  |  |  |  |  | -616.7 |  |  |  |
| '-lnL:Survey | -47.1 |  |  |  | -47.3 |  |  |  | -41.6 |  |  |  | $-46.9$ |  |  |  | -49.0 |  |  |  |
| '-lnL:CAA | -220.2 |  |  |  | -220.4 |  |  |  | -215.1 |  |  |  | -219.6 |  |  |  | -233.2 |  |  |  |
| '-lnL:CAAsurv | -478.2 |  |  |  | -477.9 |  |  |  | -489.5 |  |  |  | -478.6 |  |  |  | -478.6 |  |  |  |
| '-lnL:RecRes | 23.0 |  |  |  | 23.0 |  |  |  | 24.0 |  |  |  | 23.0 |  |  |  | 23.7 |  |  |  |
| '-lnL: SelPen | 120.4 |  |  |  | 121.2 |  |  |  | 113.5 |  |  |  | 126.4 |  |  |  | 120.4 |  |  |  |
| $h$ | 0.90 |  |  |  | 0.90 |  |  |  | 0.90 |  |  |  | 0.90 |  |  |  | 0.90 |  |  |  |
| $\theta$ | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| $\phi$ | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| $\rho$ - surveys | 0.65 |  |  |  | 0.65 |  |  |  | 0.67 |  |  |  | 0.65 |  |  |  | 0.63 |  |  |  |
| $\rho_{\text {CAAage }}$ | 0.70 | 0.24 | 0.24 | 0.38 | 0.70 | 0.25 | 0.24 | 0.38 | 0.68 | 0.24 | 0.22 | 0.35 | 0.70 | 0.25 | 0.24 | 0.38 | 0.71 | 0.24 | 0.23 | 0.38 |
| $\rho_{\text {CAAYr }}$ | -0.35 | -0.73 | -0.25 | -0.53 | -0.36 | -0.73 | -0.25 | -0.53 | -0.36 | -0.75 | -0.31 | -0.55 | -0.36 | -0.73 | -0.25 | -0.54 | -0.34 | -0.73 | -0.25 | -0.54 |
| $K^{s p}$ | 596 | (0.27) |  |  | 725 | (0.24) |  |  | 334 | (0.05) |  |  | 529 | (0.27) |  |  | 801 | (0.36) |  |  |
| $B^{s p}{ }_{2008}$ | 353 | (0.60) |  |  | 492 | (0.46) |  |  | 26 | (0.42) |  |  | 285 | (0.66) |  |  | 637 | (0.60) |  |  |
| $B^{s p} 2008 / K$ | 0.59 | (0.34) |  |  | 0.68 | (0.23) |  |  | 0.08 | (0.40) |  |  | 0.54 | (0.40) |  |  | 0.80 | (0.24) |  |  |
| MSYL ${ }^{\text {sp }}$ | 0.17 | (0.15) |  |  | 0.17 | (0.11) |  |  | 0.18 | (0.18) |  |  | 0.17 | (0.18) |  |  | 0.17 | (0.12) |  |  |
| $B^{s p}{ }_{\text {MSY }}$ | 100 | (0.41) |  |  | 122 | (0.33) |  |  | 59 | (0.20) |  |  | 91 | (0.44) |  |  | 133 | (0.45) |  |  |
| MSY | 43 | (0.26) |  |  | 52 | (0.24) |  |  | 27 | (0.04) |  |  |  | (0.25) |  |  | 57 | (0.36) |  |  |
| $\sigma_{\text {comCAA }}$ | 0.07 |  |  |  | 0.07 |  |  |  | 0.07 |  |  |  | 0.07 |  |  |  | 0.07 |  |  |  |
| Survey | $q$ 's x $10^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcai }}$ |  | $q$ 's x $10{ }^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcai }}$ |  | $q^{\prime} \leq x 10^{6}$ | $\sigma_{\text {sur }}$ | $\sigma_{\text {survas }}$ |  | $q^{\prime} \operatorname{sx} \times 10^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcai }}$ |  | $q^{\prime} \mathrm{s} \times 10^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {suruca }}$ |  |
| CanFalll | 116 | 0.29 | 0.04 |  | 94 | 0.29 | 0.04 |  | 226 | 0.32 | 0.04 |  | 132 | 0.30 | 0.04 |  | 84 | 0.29 | 0.04 |  |
| CanFall2 | 213 | 0.17 | 0.02 |  | 174 | 0.17 | 0.02 |  | 441 | 0.16 | 0.02 |  | 242 | 0.17 | 0.02 |  | 154 | 0.16 | 0.02 |  |
| EU | 67945 | 0.29 | 0.06 |  | 54621 | 0.29 | 0.06 |  | 157491 | 0.37 | 0.06 |  | 77998 | 0.30 | 0.06 |  | 47307 | 0.28 | 0.06 |  |
| CanSpr | 11 | 0.40 | 0.05 |  | 9 | 0.40 | 0.05 |  | 23 | 0.41 | 0.05 |  | 13 | 0.40 | 0.05 |  | 8 | 0.39 | 0.05 |  |
| $\sigma_{R_{-}}$out | 0.20 |  |  |  | 0.20 |  |  |  | 0.20 |  |  |  | 0.20 |  |  |  | 0.20 |  |  |  |

Table 4: Results of fits of various SCAA variants related to the choice of the $\sigma_{\Omega}$ and $M$ parameters (see text for details) to the commercial catch and survey data, compared to the New Baseline assessment. Biomass units are ' 000 t. Values fixed on input rather than estimated are shown in bold. Quantities shown in parenthesis are Hessian-based CVs.

|  | New Baseline |  |  |  | 12a) commercial $\sigma_{\Omega}=4.0$ |  |  |  | 12b) commercial $\sigma_{\Omega}=0.5$ |  |  |  | 12c) survey $\sigma_{\Omega}=1.0$ |  |  |  | 13) $M=0.15$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No of parameters <br> No of data points | 515 924 | 515 |  |  | 515 |  |  |  | 515 |  |  |  | 515 |  |  |  | 515 |  |  |  |
| '-lnL:overall | -602.2 |  |  |  | -609.9 |  |  |  | -558.3 |  |  |  | -727.6 |  |  |  | -604.0 |  |  |  |
| '-lnL:Survey | -47.1 |  |  |  | -47.1 |  |  |  | -40.0 |  |  |  | -48.5 |  |  |  | -39.2 |  |  |  |
| '-lnL:CAA | -220.2 |  |  |  | -221.8 |  |  |  | -186.9 |  |  |  | -217.1 |  |  |  | -213.5 |  |  |  |
| '-lnL.CAAsurv | -478.2 |  |  |  | -478.2 |  |  |  | -492.1 |  |  |  | -560.9 |  |  |  | -487.6 |  |  |  |
| '-lnL:RecRes | 23.0 |  |  |  | 23.0 |  |  |  | 23.4 |  |  |  | 20.4 |  |  |  | 22.8 |  |  |  |
| '-lnL:SelPen | 120.4 |  |  |  | 114.3 |  |  |  | 137.3 |  |  |  | 78.5 |  |  |  | 113.5 |  |  |  |
| $h$ | 0.90 |  |  |  | 0.90 |  |  |  | 0.90 |  |  |  | 0.90 |  |  |  | 0.90 |  |  |  |
| $\theta$ | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| $\phi$ | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| $\rho$ - surveys | 0.65 |  |  |  | 0.65 |  |  |  | 0.69 |  |  |  | 0.59 |  |  |  | 0.69 |  |  |  |
| $\rho_{\text {CAAage }}$ | 0.70 | 0.24 | 0.24 | 0.38 | 0.70 | 0.24 | 0.24 | 0.38 | 0.69 | 0.24 | 0.23 | 0.35 | 0.57 | 0.23 | 0.08 | 0.29 | 0.67 | 0.24 | 0.23 | 0.35 |
| $\rho_{\text {CaAyr }}$ | -0.35 | -0.73 | -0.25 - | -0.53 | -0.35 | -0.73 | -0.25 | -0.53 | -0.37 | -0.75 | -0.32 | -0.55 | -0.54 | -0.76 | -0.45 | -0.72 | -0.38 | -0.74 | -0.30 | -0.55 |
| $X^{s p}$ | 596 | (0.27) |  |  | 610 | (0.27) |  |  | 353 | (0.05) |  |  | 888 | (0.44) |  |  | 572 | (0.06) |  |  |
| $B^{s p}{ }_{2008}$ | 353 | (0.60) |  |  | 370 | (0.57) |  |  | 29 | (0.27) |  |  | 769 | (0.67) |  |  | 58 | (0.41) |  |  |
| $B^{s p}{ }_{2008} / K$ | 0.59 | (0.34) |  |  | 0.61 | (0.31) |  |  | 0.08 | (0.24) |  |  | 0.87 | (0.24) |  |  | 0.10 | (0.37) |  |  |
| MSYL ${ }^{\text {sp }}$ | 0.17 | (0.15) |  |  | 0.17 | (0.15) |  |  | 0.18 | (0.13) |  |  | 0.17 | (0.11) |  |  | 0.19 | (0.17) |  |  |
| $B^{s p}$ MSY | 100 | (0.41) |  |  | 102 | (0.40) |  |  | 62 | (0.15) |  |  | 148 | (0.53) |  |  | 106 | (0.20) |  |  |
| MSY | 43 | (0.26) |  |  | 44 | (0.26) |  |  | 28 | (0.04) |  |  | 63 | (0.43) |  |  | 28 | (0.05) |  |  |
| $\sigma_{\text {comCAA }}$ | 0.07 |  |  |  | 0.07 |  |  |  | 0.08 |  |  |  | 0.07 |  |  |  | 0.07 |  |  |  |
| Survey | $q{ }^{\prime} \leq \times 10^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {sur }}$ cas |  | $q$ 's x $10^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcAA }}$ |  | $q$ 's x $10{ }^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcAA }}$ |  | $q$ 's x10 ${ }^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surucas }}$ |  | $q$ 's x $10{ }^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcha }}$ |  |
| CanFalll | 116 | 0.29 | 0.04 |  | 113 | 0.29 | 0.04 |  | 204 | 0.32 | 0.04 |  | 82 | 0.29 | 0.03 |  | 232 | 0.32 | 0.04 |  |
| CanFall2 | 213 | 0.17 | 0.02 |  | 208 | 0.17 | 0.02 |  | 425 | 0.17 | 0.02 |  | 140 | 0.18 | 0.02 |  | 519 | 0.19 | 0.02 |  |
| EU | 67945 | 0.29 | 0.06 |  | 66156 | 0.29 | 0.06 |  | 146929 | 0.38 | 0.06 |  | 43641 | 0.28 | 0.05 |  | 156148 | 0.38 | 0.06 |  |
| CanSpr | 11 | 0.40 | 0.05 |  | 11 | 0.40 | 0.05 |  | 22 | 0.41 | 0.05 |  | 7 | 0.37 | 0.04 |  | 26 | 0.42 | 0.05 |  |
| $\sigma_{R_{-} \text {out }}$ | 0.20 |  |  |  | 0.20 |  |  |  | 0.20 |  |  |  | 0.18 |  |  |  | 0.19 |  |  |  |

Table 5: Results of fits of various SCAA variants starting in 1975 (see text for details) to the commercial catch and survey data, compared to the New Baseline assessment. Biomass units are ' 000 t . Values fixed on input rather than estimated are shown in bold. $-\operatorname{lnL}$ values in parenthesis in the New Baseline column are for the data as the XSA data. Quantities shown in parenthesis are Hessian-based CVs.

|  | New Baseline |  |  |  | 14a) XSA data only, start in 1975: unexploited equilibrium in 1960 |  |  |  | 14b) XSA data only, start in 1975: estimate $\theta$ and $\zeta$ |  |  |  | 14c) XSA data only, start in 1975: estimate $\theta$, start with XSA estimated proportions-at-age in 1975 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No of parameters <br> No of data points | $\begin{aligned} & 515 \\ & 924 \end{aligned}$ |  |  |  | $\begin{aligned} & 500 \\ & 714 \end{aligned}$ |  |  |  | $\begin{aligned} & 502 \\ & 714 \end{aligned}$ |  |  |  | $\begin{aligned} & 501 \\ & 714 \end{aligned}$ |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| '-lnL:overall | -602.2 | -(381.6) |  |  | -444.4 |  |  |  | -445.5 |  |  |  | -447.4 |  |  |  |
| '-lnL:Survey | -47.1 | -(31.9) |  |  | -31.0 |  |  |  | -31.0 |  |  |  | -31.0 |  |  |  |
| '-lnL:CAA | -220.2 | -(220.2) |  |  | -210.5 |  |  |  | -213.2 |  |  |  | -223.6 |  |  |  |
| '-lnL:CAAsurv | -478.2 | -(272.7) |  |  | -290.3 |  |  |  | -290.1 |  |  |  | -290.0 |  |  |  |
| '-lnL:RecRes | 23.0 | (23.0) |  |  | 20.7 |  |  |  | 21.2 |  |  |  | 26.2 |  |  |  |
| '-lnL:SelPen | 120.4 | (120.4) |  |  | 66.7 |  |  |  | 67.6 |  |  |  | 71.1 |  |  |  |
| $h$ | 0.90 |  |  |  | 0.90 |  |  |  | 0.90 |  |  |  | 0.90 |  |  |  |
| $\theta$ | 1 |  |  |  | 1 |  |  |  | 0.34 |  |  |  | 0.04 |  |  |  |
| $\phi$ | 0 |  |  |  | 0 |  |  |  | 0.27 |  |  |  | 0 |  |  |  |
| $o$ - surveys | 0.65 |  |  |  | 0.62 |  |  |  | 0.62 |  | 0.62 | 0.62 | 0.60 |  |  |  |
| $\rho_{\text {CaAage }}$ | 0.70 | 0.24 | 0.24 | 0.38 | -0.02 | 0.24 | 0.16 | 0.35 | 0.00 | 0.24 | 0.16 | 0.36 | 0.12 | 0.24 | 0.16 | 0.35 |
| $\rho_{\text {CAAyr }}$ | -0.35 | -0.73 | -0.25 | -0.53 | -0.06 | -0.75 | -0.38 | -0.57 | 0.00 | -0.75 | -0.38 | -0.56 | -0.03 | -0.75 | -0.38 | -0.56 |
| $K^{s p}$ | 596 | (0.27) |  |  | 350 | (0.05) |  |  | 339 | (0.06) |  |  | 357 | (0.07) |  |  |
| $B^{\text {sp }} 2008$ | 353 | (0.60) |  |  | 37 | (0.42) |  |  | 39 | (0.45) |  |  | 23 | (0.48) |  |  |
| $B^{s p}{ }_{2008} / K$ | 0.59 | (0.34) |  |  | 0.10 | (0.38) |  |  | 0.12 | (0.42) |  |  | 0.06 | (0.48) |  |  |
| MSYL ${ }^{\text {sp }}$ | 0.17 | (0.15) |  |  | 0.17 | (0.16) |  |  | 0.18 | (0.17) |  |  | 0.18 | (0.19) |  |  |
| $B^{s p}{ }_{\text {MSY }}$ | 100 | (0.41) |  |  | 61 | (0.19) |  |  | 59 | (0.19) |  |  | 63 | (0.20) |  |  |
| MSY | 43 | (0.26) |  |  | 28 | (0.04) |  |  | 27 | (0.05) |  |  | 29 | (0.07) |  |  |
| $\sigma_{\text {comCAA }}$ | 0.07 |  |  |  | 0.07 |  |  |  | 0.07 |  |  |  | 0.07 |  |  |  |
| Survey | $q$ 's $\times 10^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcha }}$ |  | $q$ 's $\times 10^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surca }}$ |  | $q$ 's $\times 10^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {survCA }}$ |  | $q$ 's x $10{ }^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcAA }}$ |  |
| CanFalll | 116 | 0.29 | 0.04 |  | 178 | 0.31 | 0.14 |  | 167 | 0.30 | 0.13 |  | 182 | 0.31 | 0.13 |  |
| CanFall2 | 213 | 0.17 | 0.02 |  | 421 | 0.16 | 0.02 |  | 420 | 0.16 | 0.02 |  | 447 | 0.15 | 0.02 |  |
| EU | 67945 | 0.29 | 0.06 |  | 215975 | 0.28 | 0.06 |  | 214345 | 0.28 | 0.06 |  | 235979 | 0.29 | 0.06 |  |
| Canspr | 11 | 0.40 | 0.05 |  | 22 | 0.41 | 0.05 |  | 22 | 0.41 | 0.05 |  | 23 | 0.40 | 0.05 |  |
| $\sigma_{R_{-} \text {out }}$ | 0.20 |  |  |  | 0.22 |  |  |  | 0.23 |  |  |  | 0.26 |  |  |  |

Table 6: Results of five retrospective on the New Baseline compared to the New Baseline assessment. Biomass units are '000t. Values fixed on input rather than estimated are shown in bold.

|  | New Baseline <br> data to 2007 |  |  |  | 15a) data to 2006 |  |  |  | 15b) data to 2005 |  |  |  | 15c) data to 2004 |  |  |  | 15d) data to 2003 |  |  |  | 15e) data to 2002 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No of parameters No of data points | $\begin{aligned} & 515 \\ & 924 \end{aligned}$ |  |  |  | $\begin{aligned} & 514 \\ & 882 \end{aligned}$ |  |  |  | $\begin{aligned} & 488 \\ & 850 \end{aligned}$ |  |  |  | $\begin{aligned} & 459 \\ & 808 \end{aligned}$ |  |  |  | $\begin{aligned} & 449 \\ & 767 \end{aligned}$ |  |  |  | $\begin{aligned} & 421 \\ & 726 \end{aligned}$ |  |  |  |
| '-lnL:overall | -602.2 |  |  |  | -590.4 |  |  |  | -562.4 |  |  |  | -568.0 |  |  |  | -533.1 |  |  |  | -524.7 |  |  |  |
| '-lnL:Survey | -47.1 |  |  |  | -42.6 |  |  |  | -38.4 |  |  |  | -38.1 |  |  |  | -39.0 |  |  |  | -37.5 |  |  |  |
| '-lnL: CAA | -220.2 |  |  |  | -210.1 |  |  |  | -201.7 |  |  |  | -192.4 |  |  |  | -184.0 |  |  |  | -169.7 |  |  |  |
| '-lnL:CAAsurv | -478.2 |  |  |  | -482.5 |  |  |  | -456.6 |  |  |  | -468.4 |  |  |  | -433.4 |  |  |  | -445.6 |  |  |  |
| '-lnL:RecRes | 23.0 |  |  |  | 25.8 |  |  |  | 22.2 |  |  |  | 20.9 |  |  |  | 21.6 |  |  |  | 24.3 |  |  |  |
| '-lnL:SelPen | 120.4 |  |  |  | 118.9 |  |  |  | 112.0 |  |  |  | 110.0 |  |  |  | 101.7 |  |  |  | 103.7 |  |  |  |
| $h$ | 0.90 |  |  |  | 0.90 |  |  |  | 0.90 |  |  |  | 0.90 |  |  |  | 0.90 |  |  |  | 0.90 |  |  |  |
| $\theta$ | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| $\phi$ | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| $p$ - surveys | 0.65 |  |  |  | 0.65 |  |  |  | 0.67 |  |  |  | 0.59 |  |  |  | 0.62 |  |  |  | 0.63 |  |  |  |
| $\rho_{\text {CAAage }}$ | 0.70 | 0.24 | 0.24 | 0.38 | 0.70 | 0.13 | 0.18 | 0.35 | 0.70 | 0.14 | 0.13 | 0.38 | 0.71 | -0.08 | 0.10 | 0.04 | 0.70 | -0.05 | 0.16 | -0.03 | 0.70 | -0.12 | 0.25 | -0.23 |
| $\rho_{\text {CAAYI }}$ | -0.35 | -0.73 | -0.25 - | -0.53 | -0.35 | -0.84 | -0.27 - | -0.66 | -0.35 | -0.91 | -0.24 -0 | -0.68 | -0.36 | -0.77 | -0.16 | -0.83 | -0.36 | -0.78 | -0.08 | -0.81 | -0.38 | -0.73 | -0.09 | -0.96 |
| $K^{s p}$ | 596 |  |  |  | 739 |  |  |  | 760 |  |  |  | 797 |  |  |  | 765 |  |  |  | 670 |  |  |  |
| $B^{s p}{ }_{2008}$ | 353 |  |  |  | 536 |  |  |  | 549 |  |  |  | 613 |  |  |  | 590 |  |  |  | 510 |  |  |  |
| $B^{s p}{ }_{2008} / K$ | 0.59 |  |  |  | 0.72 |  |  |  | 0.72 |  |  |  | 0.77 |  |  |  | 0.77 |  |  |  | 0.76 |  |  |  |
| MSYL ${ }^{\text {sp }}$ | 0.17 |  |  |  | 0.17 |  |  |  | 0.17 |  |  |  | 0.17 |  |  |  | 0.17 |  |  |  | 0.17 |  |  |  |
| $B^{\text {SP }}$ MSY | 100 |  |  |  | 126 |  |  |  | 130 |  |  |  | 137 |  |  |  | 132 |  |  |  | 116 |  |  |  |
| MSY | 43 |  |  |  | 52 |  |  |  | 55 |  |  |  | 58 |  |  |  | 57 |  |  |  | 50 |  |  |  |
| $\sigma_{\text {comCAA }}$ | 0.07 |  |  |  | 0.07 |  |  |  | 0.07 |  |  |  | 0.07 |  |  |  | 0.07 |  |  |  | 0.08 |  |  |  |
| Survey | $q$ 's x $10{ }^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surrcai }}$ |  | $q$ 's x $10{ }^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surrcai }}$ |  | $q$ 's x10 ${ }^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcha }}$ |  | $q$ 's x $10{ }^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcha }}$ |  | $q$ 's x10 ${ }^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcha }}$ |  | $q$ 's x $10{ }^{6}$ | $\sigma_{\text {sur }}$ | $\sigma_{\text {surcAA }}$ |  |
| CanFall | 116 | 0.29 | 0.04 |  | 92 | 0.29 | 0.04 |  | 89 | 0.29 | 0.04 |  | 86 | 0.29 | 0.04 |  | 90 | 0.29 | 0.04 |  | 106 | 0.29 | 0.04 |  |
| CanFall2 | 213 | 0.17 | 0.02 |  | 167 | 0.21 | 0.02 |  | 164 | 0.26 | 0.02 |  | 183 | 0.22 | 0.02 |  | 201 | 0.22 | 0.02 |  | 265 | 0.30 | 0.03 |  |
| EU | 67945 | 0.29 | 0.06 |  | 53219 | 0.29 | 0.06 |  | 52381 | 0.30 | 0.06 |  | 48240 | 0.30 | 0.06 |  | 47364 | 0.25 | 0.06 |  | 54091 | 0.23 | 0.06 |  |
| CanSpr | 11 | 0.40 | 0.05 |  | 9 | 0.40 | 0.04 |  | 9 | 0.38 | 0.04 |  | 9 | 0.37 | 0.02 |  | 10 | 0.37 | 0.03 |  | 12 | 0.27 | 0.00 |  |
| $\sigma_{R_{-} \text {out }}$ | 0.20 |  |  |  | 0.21 |  |  |  | 0.20 |  |  |  | 0.19 |  |  |  | 0.20 |  |  |  | 0.22 |  |  |  |

Table 7: Results of fits of various production model-type assessments to the commercial catch and survey data (see text for details). Biomass units are '000t. Values fixed on input rather than estimated are shown in bold. Quantities shown in parenthesis are Hessian-based CVs.

|  | New Baseline |  |  |  | 1) Production-type model, fitting to survey and CAA <br> ( $K$ and selectivity parameters estimated, $h$ fixed) |  |  | 2) Production-type model, fitting to survey indices only ( $K$ and $h$ estimated, selectivity fixed to PM1) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No of parameters | 515 |  |  |  | 45 |  |  | 3 |  |  |
| No of data points | 924 |  |  |  | 924 |  |  | 60 |  |  |
| '-InL:overall | -602.2 |  |  |  | 99.1 |  |  | -39.1 |  |  |
| '-lnL:Survey | -47.1 |  |  |  | -39.1 |  |  | -39.1 |  |  |
| '-lnL:CAA | -220.2 |  |  |  | -35.4 |  |  | - |  |  |
| '-lnL:CAAsurv | -478.2 |  |  |  | 173.6 |  |  | - |  |  |
| '-lnL:RecRes | 23.0 |  |  |  | - |  |  | - |  |  |
| '-lnL:SelPen | 120.4 |  |  |  | - |  |  | - |  |  |
| $h$ | 0.9 |  |  |  | 0.9 |  |  | 0.89 | (0.25) |  |
| $\theta$ | 1 |  |  |  | 1 |  |  | 1 |  |  |
| $\phi$ | 0 |  |  |  | 0 |  |  | 0 |  |  |
| $\rho$ - surveys | 0.65 |  |  |  | 0.64 |  |  | 0.64 |  |  |
| $\rho_{\text {CAAage }}$ | 0.70 | 0.24 | 0.24 | 0.38 | - |  |  | - |  |  |
| $\rho_{\text {CAAyr }}$ | -0.35 | -0.73 | -0.25 | -0.53 | - |  |  | - |  |  |
| $X^{S P}$ | 596 | (0.27) |  |  | 507 | (0.12) |  | 500 | (0.31) |  |
| $B^{\text {Sp }} 2008$ | 353 | (0.60) |  |  | 252 | (0.27) |  | 250 | (0.78) |  |
| $B^{s p}{ }_{2008} / K$ | 0.59 | (0.34) |  |  | 0.50 | (0.16) |  | 0.50 | (0.47) |  |
| $\mathrm{MSYL}^{\text {sp }}$ | 0.17 | (0.15) |  |  | 0.17 | (0.10) |  | 0.13 | (0.01) |  |
| $B^{s p} \mathrm{MSY}$ | 100 | (0.41) |  |  | 88 | (0.21) |  | 67 | (0.31) |  |
| MSY | 43 | (0.26) |  |  | 38 | (0.11) |  | 41 | (0.31) |  |
| $\sigma_{\text {comCAA }}$ | 0.07 |  |  |  | 0.15 |  |  | - |  |  |
| Survey | $q{ }^{\prime} \mathrm{s} \mathrm{x1} 0^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {surcAA }}$ |  | $q$ 's x $10^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {survCAA }}$ | $q^{\prime} \mathrm{s} \times 10^{6}$ | $\sigma_{\text {surv }}$ | $\sigma_{\text {survCAA }}$ |
| CanFall | 116 | 0.29 | 0.04 |  | 112 | 0.31 | 0.12 | 114 | 0.32 | - |
| CanFall2 | 213 | 0.17 | 0.02 |  | 222 | 0.25 | 0.10 | 221 | 0.25 | - |
| EU | 67945 | 0.29 | 0.06 |  | 72049 | 0.31 | 0.16 | 72271 | 0.31 | - |
| CanSpr | 11 | 0.40 | 0.05 |  | 14 | 0.48 | 0.18 | 14 | 0.48 | - |
| $\sigma_{R_{-} \text {out }}$ | 0.20 |  |  |  | . |  |  | - |  |  |

Table 8: Numbers-at-age (in millions) matrix for the New Baseline.

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | $20+$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1960 | 318.7 | 260.9 | 213.6 | 174.9 | 143.2 | 117.2 | 96.0 | 78.6 | 64.3 | 52.7 | 43.1 | 35.3 | 28.9 | 23.7 | 19.4 | 15.9 | 13.0 | 10.6 | 8.7 | 7.1 | 32.2 |
| 1961 | 317.9 | 260.9 | 213.6 | 174.9 | 143.2 | 117.2 | 96.0 | 78.5 | 64.1 | 52.5 | 43.1 | 35.3 | 28.9 | 23.7 | 19.4 | 15.9 | 13.0 | 10.6 | 8.7 | 7.1 | 32.2 |
| 1962 | 320.2 | 260.3 | 213.6 | 174.9 | 143.2 | 117.2 | 96.0 | 78.5 | 64.1 | 52.4 | 42.9 | 35.2 | 28.9 | 23.6 | 19.4 | 15.9 | 13.0 | 10.6 | 8.7 | 7.1 | 32.2 |
| 1963 | 324.0 | 262.1 | 213.1 | 174.9 | 143.2 | 117.2 | 96.0 | 78.5 | 64.1 | 52.3 | 42.8 | 35.1 | 28.8 | 23.6 | 19.4 | 15.9 | 13.0 | 10.6 | 8.7 | 7.1 | 32.2 |
| 1964 | 330.3 | 265.2 | 214.6 | 174.5 | 143.2 | 117.2 | 95.9 | 78.3 | 63.9 | 52.2 | 42.7 | 35.0 | 28.7 | 23.6 | 19.3 | 15.8 | 13.0 | 10.6 | 8.7 | 7.1 | 32.2 |
| 1965 | 292.2 | 270.4 | 217.2 | 175.7 | 142.9 | 117.2 | 95.9 | 78.0 | 63.1 | 51.5 | 42.4 | 34.8 | 28.6 | 23.5 | 19.3 | 15.8 | 13.0 | 10.6 | 8.7 | 7.1 | 32.2 |
| 1966 | 346.9 | 239.2 | 221.4 | 177.8 | 143.9 | 116.9 | 95.8 | 77.1 | 61.4 | 49.9 | 41.4 | 34.4 | 28.3 | 23.3 | 19.2 | 15.8 | 12.9 | 10.6 | 8.7 | 7.1 | 32.2 |
| 1967 | 345.6 | 284.0 | 195.9 | 181.3 | 145.6 | 117.7 | 95.3 | 75.7 | 58.4 | 46.9 | 39.3 | 33.3 | 27.8 | 23.0 | 19.0 | 15.6 | 12.9 | 10.6 | 8.7 | 7.1 | 32.2 |
| 1968 | 389.4 | 282.9 | 232.5 | 160.4 | 148.4 | 119.1 | 95.8 | 74.2 | 55.4 | 43.3 | 36.4 | 31.4 | 26.8 | 22.5 | 18.7 | 15.4 | 12.7 | 10.5 | 8.6 | 7.1 | 32.1 |
| 1969 | 307.0 | 318.9 | 231.7 | 190.4 | 131.3 | 121.4 | 96.7 | 73.5 | 52.6 | 39.9 | 33.1 | 28.8 | 25.1 | 21.6 | 18.2 | 15.2 | 12.6 | 10.4 | 8.6 | 7.1 | 32.1 |
| 1970 | 302.4 | 251.4 | 261.1 | 189.7 | 155.8 | 107.4 | 98.4 | 73.3 | 50.6 | 36.9 | 30.0 | 26.0 | 23.0 | 20.2 | 17.5 | 14.8 | 12.4 | 10.3 | 8.5 | 7.0 | 32.0 |
| 1971 | 297.9 | 247.6 | 205.8 | 213.7 | 155.3 | 127.4 | 87.0 | 74.4 | 50.1 | 35.3 | 27.7 | 23.6 | 20.7 | 18.5 | 16.3 | 14.2 | 12.0 | 10.1 | 8.4 | 6.9 | 31.9 |
| 1972 | 390.5 | 243.9 | 202.7 | 168.5 | 175.0 | 127.0 | 103.6 | 67.4 | 53.9 | 36.8 | 27.2 | 22.0 | 19.0 | 16.8 | 15.0 | 13.3 | 11.6 | 9.8 | 8.2 | 6.8 | 31.8 |
| 1973 | 395.4 | 319.7 | 199.7 | 166.0 | 137.9 | 143.1 | 103.1 | 79.4 | 47.6 | 38.7 | 28.1 | 21.6 | 17.6 | 15.3 | 13.6 | 12.2 | 10.8 | 9.4 | 8.0 | 6.7 | 31.6 |
| 1974 | 345.2 | 323.7 | 261.8 | 163.5 | 135.9 | 112.8 | 116.3 | 79.3 | 56.5 | 34.4 | 29.6 | 22.3 | 17.3 | 14.2 | 12.4 | 11.0 | 9.9 | 8.8 | 7.7 | 6.6 | 31.4 |
| 1975 | 322.1 | 282.7 | 265.0 | 214.3 | 133.8 | 111.1 | 91.7 | 89.9 | 57.2 | 41.3 | 26.5 | 23.6 | 17.9 | 13.9 | 11.5 | 10.1 | 9.0 | 8.1 | 7.2 | 6.3 | 31.0 |
| 1976 | 308.8 | 263.7 | 231.4 | 217.0 | 175.4 | 109.4 | 90.8 | 73.2 | 68.8 | 42.2 | 30.1 | 19.9 | 18.7 | 14.3 | 11.3 | 9.4 | 8.2 | 7.3 | 6.6 | 5.9 | 30.5 |
| 1977 | 261.2 | 252.8 | 215.9 | 189.5 | 177.6 | 143.5 | 89.4 | 72.8 | 56.7 | 51.7 | 31.3 | 22.9 | 15.9 | 15.1 | 11.6 | 9.1 | 7.6 | 6.7 | 6.0 | 5.4 | 29.8 |
| 1978 | 304.2 | 213.9 | 207.0 | 176.8 | 155.1 | 145.3 | 116.0 | 68.7 | 51.4 | 40.1 | 39.7 | 24.8 | 18.4 | 12.8 | 12.2 | 9.4 | 7.5 | 6.2 | 5.5 | 4.9 | 28.8 |
| 1979 | 367.0 | 249.1 | 175.1 | 169.5 | 144.7 | 126.8 | 117.1 | 87.7 | 46.6 | 35.0 | 30.3 | 31.1 | 19.8 | 14.8 | 10.4 | 9.9 | 7.7 | 6.1 | 5.1 | 4.5 | 27.6 |
| 1980 | 303.3 | 300.5 | 203.9 | 143.3 | 138.7 | 118.4 | 102.7 | 91.2 | 63.9 | 33.4 | 25.6 | 22.4 | 25.0 | 16.0 | 12.0 | 8.4 | 8.1 | 6.3 | 5.0 | 4.2 | 26.2 |
| 1981 | 287.2 | 248.3 | 246.0 | 166.9 | 117.3 | 113.5 | 95.6 | 79.2 | 65.1 | 44.6 | 24.0 | 18.6 | 17.9 | 20.2 | 13.0 | 9.7 | 6.9 | 6.6 | 5.1 | 4.1 | 24.8 |
| 1982 | 286.9 | 235.2 | 203.3 | 201.4 | 136.7 | 96.0 | 92.5 | 75.1 | 57.1 | 44.8 | 32.7 | 18.4 | 14.8 | 14.4 | 16.3 | 10.5 | 7.9 | 5.6 | 5.4 | 4.2 | 23.6 |
| 1983 | 277.6 | 234.9 | 192.5 | 166.4 | 164.9 | 111.8 | 78.3 | 73.2 | 55.6 | 40.8 | 33.6 | 25.5 | 14.8 | 11.9 | 11.7 | 13.3 | 8.6 | 6.5 | 4.6 | 4.4 | 22.8 |
| 1984 | 311.2 | 227.3 | 192.3 | 157.6 | 136.2 | 134.9 | 91.0 | 61.7 | 52.8 | 39.0 | 30.5 | 26.6 | 20.5 | 12.0 | 9.7 | 9.5 | 10.8 | 7.0 | 5.3 | 3.7 | 22.2 |
| 1985 | 315.6 | 254.8 | 186.1 | 157.5 | 129.0 | 111.5 | 109.7 | 71.5 | 43.9 | 36.4 | 28.9 | 24.1 | 21.4 | 16.6 | 9.7 | 7.9 | 7.8 | 8.8 | 5.7 | 4.3 | 21.2 |
| 1986 | 283.9 | 258.4 | 208.6 | 152.4 | 128.9 | 105.6 | 90.1 | 86.1 | 53.3 | 32.3 | 28.4 | 23.2 | 19.5 | 17.4 | 13.5 | 7.9 | 6.5 | 6.3 | 7.2 | 4.7 | 20.9 |
| 1987 | 236.0 | 232.4 | 211.6 | 170.8 | 124.7 | 105.5 | 85.4 | 70.9 | 64.7 | 39.5 | 25.3 | 22.8 | 18.8 | 15.8 | 14.2 | 11.0 | 6.5 | 5.3 | 5.2 | 5.9 | 21.0 |
| 1988 | 220.9 | 193.2 | 190.3 | 173.2 | 139.8 | 102.0 | 86.1 | 66.6 | 47.4 | 44.6 | 30.2 | 20.0 | 18.3 | 15.1 | 12.8 | 11.5 | 9.0 | 5.3 | 4.3 | 4.2 | 22.0 |
| 1989 | 195.0 | 180.9 | 158.2 | 155.8 | 141.8 | 114.4 | 83.4 | 68.4 | 48.1 | 34.8 | 34.9 | 24.2 | 16.2 | 14.8 | 12.3 | 10.4 | 9.4 | 7.3 | 4.3 | 3.5 | 21.5 |
| 1990 | 232.5 | 159.7 | 148.1 | 129.5 | 127.5 | 116.0 | 93.4 | 66.1 | 50.1 | 36.0 | 27.1 | 27.5 | 19.4 | 13.0 | 12.0 | 10.0 | 8.5 | 7.7 | 6.0 | 3.5 | 20.4 |
| 1991 | 248.5 | 190.4 | 130.7 | 121.2 | 106.0 | 104.2 | 94.3 | 70.5 | 40.5 | 32.6 | 25.9 | 20.2 | 21.4 | 15.3 | 10.4 | 9.7 | 8.1 | 6.9 | 6.2 | 4.9 | 19.6 |
| 1992 | 249.5 | 203.4 | 155.9 | 107.0 | 99.2 | 86.5 | 81.8 | 68.9 | 43.6 | 24.3 | 21.1 | 18.5 | 15.4 | 16.6 | 12.1 | 8.3 | 7.8 | 6.6 | 5.6 | 5.1 | 20.0 |
| 1993 | 370.8 | 204.3 | 166.6 | 127.6 | 87.6 | 81.0 | 67.7 | 59.1 | 41.4 | 25.3 | 15.4 | 14.9 | 14.0 | 11.9 | 13.1 | 9.7 | 6.7 | 6.3 | 5.3 | 4.6 | 20.5 |
| 1994 | 463.0 | 303.6 | 167.2 | 136.4 | 104.4 | 71.5 | 51.6 | 39.2 | 32.7 | 24.6 | 17.3 | 11.4 | 11.4 | 10.9 | 9.4 | 10.5 | 7.8 | 5.4 | 5.1 | 4.3 | 20.4 |
| 1995 | 440.5 | 379.1 | 248.6 | 136.9 | 111.6 | 85.2 | 45.0 | 29.3 | 21.3 | 19.2 | 16.6 | 12.7 | 8.7 | 8.9 | 8.6 | 7.5 | 8.5 | 6.3 | 4.4 | 4.2 | 20.2 |
| 1996 | 265.7 | 360.7 | 310.4 | 203.5 | 112.1 | 91.2 | 68.5 | 34.4 | 20.5 | 15.6 | 14.6 | 13.1 | 10.0 | 6.9 | 7.2 | 7.0 | 6.1 | 6.9 | 5.1 | 3.6 | 20.0 |
| 1997 | 254.5 | 217.5 | 295.3 | 254.1 | 166.6 | 91.6 | 73.0 | 51.7 | 23.2 | 14.7 | 11.8 | 11.5 | 10.3 | 8.0 | 5.6 | 5.8 | 5.7 | 5.0 | 5.6 | 4.2 | 19.3 |
| 1998 | 298.3 | 208.4 | 178.1 | 241.8 | 208.0 | 136.2 | 72.7 | 55.0 | 35.7 | 16.4 | 10.9 | 9.1 | 9.1 | 8.2 | 6.4 | 4.5 | 4.7 | 4.6 | 4.1 | 4.6 | 19.2 |
| 1999 | 358.3 | 244.2 | 170.6 | 145.8 | 197.9 | 170.1 | 108.6 | 55.4 | 38.9 | 25.7 | 12.3 | 8.5 | 7.2 | 7.3 | 6.7 | 5.2 | 3.7 | 3.8 | 3.8 | 3.3 | 19.4 |
| 2000 | 412.4 | 293.3 | 199.9 | 139.7 | 119.4 | 161.7 | 137.3 | 82.5 | 36.2 | 28.5 | 19.7 | 9.6 | 6.7 | 5.7 | 5.9 | 5.4 | 4.2 | 3.0 | 3.1 | 3.1 | 18.6 |
| 2001 | 453.5 | 337.6 | 240.2 | 163.7 | 114.3 | 97.5 | 130.3 | 103.0 | 51.5 | 26.0 | 21.6 | 15.3 | 7.5 | 5.3 | 4.6 | 4.7 | 4.4 | 3.4 | 2.4 | 2.5 | 17.7 |
| 2002 | 361.9 | 371.3 | 276.4 | 196.6 | 134.0 | 93.5 | 77.8 | 95.4 | 64.5 | 37.3 | 20.4 | 17.2 | 12.2 | 6.0 | 4.3 | 3.7 | 3.8 | 3.6 | 2.8 | 2.0 | 16.6 |
| 2003 | 244.7 | 296.3 | 304.0 | 226.3 | 161.0 | 109.6 | 74.7 | 57.5 | 61.0 | 47.1 | 29.4 | 16.2 | 13.7 | 9.8 | 4.9 | 3.5 | 3.0 | 3.1 | 2.9 | 2.3 | 15.2 |
| 2004 | 251.1 | 200.3 | 242.6 | 248.9 | 185.3 | 131.6 | 85.2 | 52.4 | 33.6 | 43.1 | 37.0 | 23.6 | 13.0 | 11.0 | 7.9 | 4.0 | 2.8 | 2.5 | 2.6 | 2.4 | 14.3 |
| 2005 | 198.8 | 205.6 | 164.0 | 198.6 | 203.7 | 151.6 | 103.4 | 61.6 | 32.8 | 24.4 | 34.2 | 29.8 | 18.9 | 10.5 | 9.0 | 6.5 | 3.2 | 2.3 | 2.0 | 2.1 | 13.6 |
| 2006 | $333.2$ | $162.7$ | $168.3$ | $134.3$ | $162.6$ | $166.7$ | $122.3$ | $79.4$ | $41.3$ | $23.2$ | $18.8$ | $27.4$ | $24.1$ | 15.4 | $8.5$ | $7.3$ | $5.3$ | $2.6$ | 1.9 | $1.7$ | 12.9 |
| 2007 | 309.7 | 272.8 | 133.2 | 137.8 | 109.9 | 133.1 | 134.7 | 94.5 | 54.3 | 29.5 | 17.9 | 15.1 | 22.2 | 19.6 | 12.5 | 7.0 | 6.0 | 4.3 | 2.2 | 1.5 | 11.9 |
| 2008 | 311.0 | 253.5 | 223.3 | 109.1 | 112.8 | 90.0 | 108.4 | 106.9 | 66.6 | 39.6 | 23.1 | 14.3 | 12.2 | 18.1 | 15.9 | 10.2 | 5.7 | 4.9 | 3.5 | 1.8 | 11.0 |

Table 9 fishing mortality-at-age matrix for the New Baseline.

|  |  |  |  |  |  |  |  |  |  |  |  | 1 | 12 |  |  |  |  |  | 18 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.0000 | 0000 | 000 | 0.0000 | 0000 | ,002 | 0016 | 0035 | 0032 | 0 | 0.0008 | 0006 | 000 | . 000 | . 0002 | . 000 | . 0001 | 0.0001 | 0000 | . 000 | . 0000 | 0.0 |
|  |  | 0.00 | 0.00 |  | 0.00 | 0.0002 | 0.0013 |  |  | 0014 |  | . 00 |  |  | 00 | 0 | 00 | . 00 | . 000 | . 00 | . 000 | 15 |
|  |  | 0.000 | 0.000 | 0.00 | 0.000 | 0.000 | 0.0010 | 0.002 |  | 0.001 | 00 | 00 | 00 | , | 00 | 0001 | 0.0001 | 0.0000 | . 00 | 00 | . 00 | 0.0012 |
|  | 0.000 | .000 | 000 | 000 | 0.000 | 0.000 | 0.002 | 0.006 | 0.005 | 0.00 | 00 | 00 | 00 | 00 | . 00 | . 000 | 0.0002 | . 000 | 0.0001 | 0.0001 | 0.0000 | 0.0032 |
|  | 0.000 | 0.000 | 000 | .00 | 0.000 | 0.000 | 0.007 | 0.01 | 0.01 | 0.008 | 0.00 | 0.002 | 0.00 | 0.00 | 0.00 | 0.0006 | 0.0004 | 0.0003 | 0.0002 | 0.0001 | 0.0001 | 0.0085 |
|  | 0.00 | 00 | 0.000 | 0.000 | 0.000 | 0.002 | 0.0180 | 0.03 | 0.0349 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.0007 | 0.0005 | 0.0003 | 0.0002 | 0.0204 |
|  |  | 0.00 | 0.000 | 0.000 | 0.000 | 0.004 |  | 0.07 |  |  |  | 0.01 |  |  | 0.00 |  |  | - | 0.000 | 0.000 | 0.0004 |  |
|  |  | 0.000 | 0.000 | 0.000 |  |  |  |  |  |  |  | 0.01 |  |  | 0.0 | . 00 |  |  | 0.0013 | 00 |  |  |
|  |  |  | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  | 00 |  |  | . 016 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0059 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 0.00 | 0.000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.007 | 0.063 |  |  |  |  | . 2 |  |  |  | .00 | , | , | . 016 |  |  |  |
|  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.007 | 0.057 |  | 0.11 |  | , 02 | 01 | , | .00 | , | 00 | ,03 | 0021 | ,0014 | . 010 |  | 0659 |
|  | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | , 02 | , 2 |  | 0.10 | 0.11 | 0.08 | 0.029 | . 02 | . 01 | 00 | 00 | 004 | 00 | . 0021 | 0015 | . 010 |  |
|  | 00 | 0.000 | .000 | .00 | 0.001 | 0.001 | 0.021 | 0.055 | 0.08 | 0.0968 | 0.07 | . 02 | . 01 | . 01 | 0.0079 | 0.0054 | 0.0037 | 0.0026 | 0.0018 | 0.0012 | 0.0008 | 0.0558 |
|  | 00 | 0.000 | 0.000 | 000 | 0.000 | 0.012 | 0.064 | 0.148 | 0.14 | 0.06 | 0.03 | 0.021 | 0.01 | . 01 | . 00 | 0.00 | 00 | 0.00 | 0.00 | 0.00 | 0.0007 | 0.0783 |
|  | 00 | 0.000 | .000 | .000 | 0.001 | 0.015 | 0.080 | 018 | 0.18 | 0.08 | 0.04 | 0.02 | 0.01 | 01 | 00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0013 | 0.0009 | 0.0983 |
|  | 0.000 | 000 | .000 | 000 | 0.000 | 0.011 | 0.050 | 0.11 | 0.13 | 0.11 | 0.10 | 0.018 | 0.01 | . 00 | . 00 | 0.00 | 0.002 | 0.00 | 0.00 | . 00 | 0.0006 | 0.0880 |
|  | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.013 | 0.05 | 0.136 | 0.15 | 0.130 | 0.12 | 0.02 | 0.01 | 0.0 | 0.00 | 0.00 | 0.003 | 0.002 | 0.001 | . 0011 | . 00 | 0.1035 |
|  | 0.00 | 0.000 | 0.000 | 0.000 | 0.001 | 0.00 | 0.041 | 0 | 0.17 | 0.11 | 0.06 | 0.02 | 0.01 | 0.01 | 0.00 | 0.0060 | 0.0041 | 0.002 | 0.002 | 0.0013 | 0.00 | 66 |
|  | 0.00 | 0.000 | 0.000 | 0.000 | 0.001 | 0.003 | 0.0333 |  | 0 | 0.08 | 0.04 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.0033 | 0.002 | 0.001 | 0.0011 | 0.0007 | 8 |
|  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.03 | - | 0.1552 | 0.09 | 0.03 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.002 | 0.00 | 0.0011 | 0.00 | 0.0005 |  |
|  | 0.000 | 0.000 | 0.000 | 0.000 | -000 | 0.006 | 0.0416 | , | 0.1720 | , | 0.03 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.002 | 0.00 | 0.001 | 0.000 | 0.0006 |  |
|  | 0.000 | 0.000 | . | . | 0.000 | 0.013 | 0.0422 | 0.09 | 0.10 |  | 0.01 | 0.01 | 0.0 | 0 | 0.00 | 0.00 | 0.0018 | 0.0013 | 0.0009 | 0.0006 | . 0004 |  |
|  | 0.000 | 0. | 0. | 0.000 |  | 0.01 |  |  | 0.10 |  |  | 0.0113 |  |  | 0.0037 | 0.0025 |  |  | 0.0008 | 0.0006 |  |  |
|  | 0.000 | . | . |  |  |  |  |  |  |  |  | 0.0226 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0.00 | 0.000 | 0.000 | 0.000 | 0.003 |  | 0.113 |  |  | 0.23 | 0.13 | 07 |  | 03 | 02 | 0160 | 0110 |  |  |  |  |  |
|  | 0.00 | 0.000 | 0.000 | 0.000 | 0.003 | 0.045 | 0.124 |  |  |  | 0.14 |  | 0.05 |  | 02 | 01 | 01 | 0082 | 0056 | 0.0039 |  |  |
|  | 0.00 |  |  |  |  | 0.2511 |  |  |  |  |  | 0.0696 | 0.04 |  | 0.0222 |  |  | 0.0072 |  | 0.0034 |  |  |
|  | 0.00 | 0.000 | 0.000 | , | , | 0.263 |  |  |  | , | , | . 07 | . 04 | , | 02 | 0.0159 |  |  | 0.0052 | . 00 | . 0 |  |
|  | 0.00 | 0.000 | 0.000 | 0.0002 | . 001 | 0.019 | , | 0.160 | 0.110 | . | 0.03 | 0.03 | 0.02 | 0.01 | 0.01 | . | 0.00 | 0.00 | 0.00 | . 0018 | 0.00 |  |
|  | 0.00 | 0.000 | 0.000 | 0.000 | 0.001 | 0.022 | 081 | 0.191 | 0.131 | 0.081 | 0.04 | 0.04 | 0.028 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.003 | . 0021 | 0.00 |  |
|  | 0.00 | 0.000 | 0.000 | 0.0002 | 0.0015 | 0.030 | 0.083 | 0.170 | 0.150 | 0.10 | 0.06 | 0.03 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.0036 | 0.002 | 0.0017 | 0.001 |  |
|  | . 000 | 0.0000 | 0.000 | 0.0002 | 0.001 | 0.026 | 0.071 | 0.144 | 0.127 | 0.08 | 0.05 | 0.029 | 0.02 | 0.01 | 0.00 | 0.006 | 0.00 | 0.003 | 0.002 | 0.0015 | 0.001 |  |
|  | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.013 | 0.074 | 0.225 | 0.111 | 0.06 | 0.04 | 0.0395 | 0.02 | 0.018 | 0.01 | 0.0087 | 0.006 | 0.004 | 0.002 | 0.0020 | 0.001 |  |
|  | . 0 | 0.000 | 0.000 | 0.000 | 0.002 | . | 0.088 | 0.27 | 0.13 | 0.07 | 0.05 | 0.04 | 0.03 | 0.02 | 0.01 | 0.010 | 0.007 | 0.00 | . | . 0023 | . 001 |  |
|  | 0.0000 | 0.000 | 0.000 | 㖪 | , | 0.025 | 0.112 |  | , |  | . | 0.02 | 0.01 |  | . | 0.00 | , | , | , |  | . |  |
|  | . | 0.000 | 0.000 | 0.000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 0.000 | 0.000 | 0.000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 0.0000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 10: Numbers-at-age (in millions) matrix for case 14a - starting in 1975 assuming equilibrium in 1960.

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | $20+$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1960 | 187.1 | 153.2 | 125.4 | 102.7 | 84.1 | 68.8 | 56.4 | 46.1 | 37.8 | 30.9 | 25.3 | 20.7 | 17.0 | 13.9 | 11.4 | 9.3 | 7.6 | 6.2 | 5.1 | 4.2 | 18.9 |
| 1961 | 187.1 | 153.2 | 125.4 | 102.7 | 84.1 | 68.8 | 56.3 | 46.1 | 37.6 | 30.8 | 25.2 | 20.7 | 17.0 | 13.9 | 11.4 | 9.3 | 7.6 | 6.2 | 5.1 | 4.2 | 18.9 |
| 1962 | 187.1 | 153.2 | 125.4 | 102.7 | 84.1 | 68.8 | 56.3 | 46.1 | 37.6 | 30.7 | 25.1 | 20.6 | 16.9 | 13.9 | 11.4 | 9.3 | 7.6 | 6.2 | 5.1 | 4.2 | 18.9 |
| 1963 | 187.1 | 153.2 | 125.4 | 102.7 | 84.1 | 68.8 | 56.3 | 46.1 | 37.6 | 30.7 | 25.1 | 20.6 | 16.9 | 13.8 | 11.3 | 9.3 | 7.6 | 6.2 | 5.1 | 4.2 | 18.9 |
| 1964 | 187.1 | 153.2 | 125.4 | 102.7 | 84.1 | 68.8 | 56.3 | 46.0 | 37.4 | 30.5 | 25.0 | 20.4 | 16.8 | 13.8 | 11.3 | 9.3 | 7.6 | 6.2 | 5.1 | 4.2 | 18.9 |
| 1965 | 187.1 | 153.2 | 125.4 | 102.7 | 84.1 | 68.8 | 56.3 | 45.8 | 36.9 | 30.0 | 24.6 | 20.2 | 16.6 | 13.7 | 11.3 | 9.2 | 7.6 | 6.2 | 5.1 | 4.2 | 18.9 |
| 1966 | 187.1 | 153.2 | 125.4 | 102.7 | 84.1 | 68.8 | 56.2 | 45.3 | 35.7 | 28.7 | 23.6 | 19.7 | 16.3 | 13.5 | 11.1 | 9.2 | 7.5 | 6.2 | 5.1 | 4.2 | 18.9 |
| 1967 | 187.0 | 153.2 | 125.4 | 102.7 | 84.1 | 68.8 | 56.1 | 44.5 | 33.6 | 26.3 | 21.7 | 18.5 | 15.6 | 13.1 | 10.8 | 9.0 | 7.4 | 6.1 | 5.1 | 4.2 | 18.8 |
| 1968 | 186.9 | 153.1 | 125.4 | 102.7 | 84.1 | 68.8 | 55.9 | 43.6 | 31.4 | 23.5 | 19.1 | 16.6 | 14.4 | 12.4 | 10.5 | 8.7 | 7.3 | 6.0 | 5.0 | 4.1 | 18.8 |
| 1969 | 186.8 | 153.0 | 125.4 | 102.7 | 84.0 | 68.7 | 55.8 | 42.8 | 29.4 | 20.8 | 16.5 | 14.4 | 12.8 | 11.3 | 9.8 | 8.4 | 7.0 | 5.9 | 4.9 | 4.1 | 18.7 |
| 1970 | 186.5 | 152.9 | 125.3 | 102.6 | 84.0 | 68.7 | 55.6 | 42.0 | 27.4 | 18.4 | 14.0 | 12.1 | 10.9 | 9.9 | 8.9 | 7.8 | 6.7 | 5.7 | 4.8 | 4.0 | 18.6 |
| 1971 | 186.2 | 152.7 | 125.2 | 102.6 | 84.0 | 68.7 | 55.5 | 41.7 | 26.3 | 16.7 | 12.2 | 10.2 | 9.1 | 8.4 | 7.8 | 7.1 | 6.3 | 5.4 | 4.6 | 3.9 | 18.4 |
| 1972 | 185.8 | 152.5 | 125.0 | 102.5 | 84.0 | 68.7 | 55.7 | 42.7 | 28.3 | 17.6 | 11.8 | 9.2 | 7.9 | 7.2 | 6.7 | 6.3 | 5.7 | 5.1 | 4.4 | 3.8 | 18.2 |
| 1973 | 185.3 | 152.1 | 124.8 | 102.4 | 83.9 | 68.6 | 55.6 | 42.2 | 27.8 | 18.1 | 12.0 | 8.8 | 7.0 | 6.2 | 5.7 | 5.4 | 5.1 | 4.6 | 4.1 | 3.6 | 17.9 |
| 1974 | 184.7 | 151.7 | 124.5 | 102.2 | 83.8 | 68.6 | 55.6 | 42.2 | 27.6 | 17.8 | 12.4 | 8.9 | 6.7 | 5.5 | 4.9 | 4.5 | 4.3 | 4.1 | 3.8 | 3.4 | 17.6 |
| 1975 | 189.4 | 151.3 | 124.2 | 102.0 | 83.7 | 68.5 | 55.6 | 42.3 | 27.8 | 17.8 | 12.3 | 9.2 | 6.8 | 5.2 | 4.3 | 3.9 | 3.7 | 3.5 | 3.3 | 3.1 | 17.1 |
| 1976 | 195.1 | 155.0 | 123.8 | 101.7 | 83.5 | 68.4 | 55.9 | 43.7 | 30.5 | 18.0 | 11.0 | 8.0 | 7.0 | 5.3 | 4.1 | 3.5 | 3.1 | 3.0 | 2.8 | 2.7 | 16.4 |
| 1977 | 153.5 | 159.7 | 126.9 | 101.4 | 83.2 | 68.2 | 55.8 | 44.2 | 32.0 | 20.5 | 11.6 | 7.4 | 6.1 | 5.5 | 4.2 | 3.3 | 2.8 | 2.5 | 2.4 | 2.3 | 15.6 |
| 1978 | 184.7 | 125.6 | 130.7 | 103.9 | 83.0 | 68.1 | 54.6 | 40.8 | 27.9 | 19.8 | 14.4 | 8.7 | 5.7 | 4.8 | 4.4 | 3.4 | 2.7 | 2.3 | 2.1 | 2.0 | 14.6 |
| 1979 | 222.6 | 151.2 | 102.9 | 107.0 | 85.1 | 67.8 | 54.1 | 38.5 | 23.6 | 15.7 | 13.3 | 10.5 | 6.6 | 4.4 | 3.8 | 3.5 | 2.7 | 2.2 | 1.8 | 1.7 | 13.5 |
| 1980 | 187.4 | 182.3 | 123.8 | 84.2 | 87.6 | 69.6 | 54.4 | 39.9 | 24.6 | 14.1 | 9.8 | 8.2 | 8.1 | 5.2 | 3.5 | 3.0 | 2.8 | 2.2 | 1.8 | 1.5 | 12.4 |
| 1981 | 184.5 | 153.4 | 149.2 | 101.4 | 68.9 | 71.6 | 55.5 | 39.0 | 23.5 | 13.2 | 8.1 | 5.6 | 6.3 | 6.3 | 4.1 | 2.8 | 2.5 | 2.3 | 1.8 | 1.4 | 11.4 |
| 1982 | 201.3 | 151.0 | 125.6 | 122.2 | 83.0 | 56.3 | 58.2 | 42.4 | 24.6 | 11.8 | 7.0 | 5.0 | 4.2 | 4.8 | 4.9 | 3.3 | 2.3 | 2.0 | 1.8 | 1.5 | 10.4 |
| 1983 | 178.2 | 164.8 | 123.7 | 102.8 | 100.0 | 67.8 | 45.8 | 45.2 | 28.5 | 13.9 | 6.9 | 4.6 | 3.8 | 3.2 | 3.8 | 4.0 | 2.6 | 1.8 | 1.6 | 1.5 | 9.7 |
| 1984 | 198.1 | 145.9 | 135.0 | 101.2 | 84.2 | 81.7 | 55.0 | 35.1 | 29.3 | 16.8 | 8.8 | 4.9 | 3.5 | 3.0 | 2.6 | 3.0 | 3.2 | 2.1 | 1.5 | 1.3 | 9.1 |
| 1985 | 220.0 | 162.2 | 119.4 | 110.5 | 82.9 | 68.8 | 66.3 | 42.1 | 22.6 | 17.1 | 10.5 | 6.2 | 3.7 | 2.7 | 2.4 | 2.0 | 2.4 | 2.6 | 1.7 | 1.2 | 8.5 |
| 1986 | 199.0 | 180.1 | 132.8 | 97.8 | 90.5 | 67.8 | 55.1 | 50.4 | 29.2 | 14.9 | 12.5 | 8.2 | 4.9 | 3.0 | 2.2 | 1.9 | 1.7 | 2.0 | 2.1 | 1.4 | 7.9 |
| 1987 | 165.4 | 163.0 | 147.5 | 108.7 | 80.0 | 74.0 | 54.4 | 42.3 | 35.5 | 19.7 | 11.0 | 9.8 | 6.4 | 3.9 | 2.4 | 1.8 | 1.5 | 1.3 | 1.6 | 1.7 | 7.6 |
| 1988 | 150.7 | 135.4 | 133.4 | 120.7 | 89.0 | 65.4 | 60.3 | 41.6 | 24.1 | 20.4 | 13.8 | 8.4 | 7.5 | 5.0 | 3.1 | 1.9 | 1.4 | 1.2 | 1.1 | 1.3 | 7.6 |
| 1989 | 137.7 | 123.4 | 110.8 | 109.2 | 98.8 | 72.8 | 53.4 | 47.2 | 27.4 | 15.9 | 15.2 | 10.8 | 6.6 | 6.0 | 4.0 | 2.5 | 1.5 | 1.2 | 1.0 | 0.9 | 7.3 |
| 1990 | 106.1 | 112.7 | 101.0 | 90.7 | 89.4 | 80.8 | 59.3 | 41.6 | 32.4 | 19.1 | 11.7 | 11.3 | 8.4 | 5.2 | 4.8 | 3.2 | 2.0 | 1.3 | 0.9 | 0.8 | 6.7 |
| 1991 | 106.4 | 86.9 | 92.3 | 82.7 | 74.3 | 73.0 | 65.5 | 42.9 | 21.2 | 17.5 | 11.9 | 7.6 | 8.1 | 6.2 | 4.0 | 3.7 | 2.6 | 1.6 | 1.0 | 0.8 | 6.1 |
| 1992 | 122.1 | 87.1 | 71.1 | 75.6 | 67.7 | 60.5 | 56.6 | 46.0 | 22.8 | 9.1 | 8.1 | 6.8 | 5.0 | 5.7 | 4.6 | 3.0 | 2.9 | 2.0 | 1.3 | $0.8$ | 5.6 |
| 1993 | 187.8 | 100.0 | 71.3 | 58.2 | 61.8 | 55.1 | 46.5 | 38.6 | 22.2 | 8.3 | 3.7 | 4.3 | 4.3 | 3.5 | 4.2 | 3.5 | 2.3 | 2.3 | 1.6 | 1.0 | 5.2 |
| 1994 | 234.0 | 153.7 | 81.9 | 58.4 | 47.6 | 50.3 | 30.3 | 22.3 | 16.1 | 9.1 | 3.5 | 1.8 | 2.7 | 3.0 | 2.5 | 3.1 | 2.7 | 1.8 | 1.8 | 1.3 | 5.0 |
| 1995 | 230.2 | 191.6 | 125.9 | 67.0 | 47.8 | 38.8 | 25.8 | 13.1 | 8.1 | 5.7 | 3.4 | 1.6 | 1.1 | 1.8 | 2.1 | 1.9 | 2.4 | 2.1 | 1.5 | 1.4 | 5.1 |
| 1996 | 139.8 | 188.5 | 156.9 | 103.0 | 54.8 | 38.9 | 30.4 | 18.2 | 7.5 | 4.8 | 3.6 | 2.3 | 1.0 | 0.8 | 1.4 | 1.6 | 1.5 | 1.9 | 1.7 | 1.2 | 5.3 |
| 1997 | 137.5 | 114.5 | 154.3 | 128.4 | 84.3 | 44.7 | 30.4 | 20.9 | 9.6 | 4.2 | 2.9 | 2.4 | 1.5 | 0.7 | 0.6 | 1.0 | 1.3 | 1.1 | 1.5 | 1.3 | 5.3 |
| 1998 | 158.3 | 112.6 | 93.7 | 126.3 | 105.1 | 68.7 | 34.5 | 20.6 | 10.3 | 4.8 | 2.3 | 1.8 | 1.6 | 1.1 | 0.5 | 0.4 | 0.8 | 1.0 | 0.9 | 1.2 | 5.4 |
| 1999 | 184.1 | 129.6 | 92.1 | 76.7 | 103.4 | 85.7 | 53.3 | 23.7 | 10.6 | 5.3 | 2.8 | 1.5 | 1.2 | 1.2 | 0.8 | 0.4 | 0.3 | 0.6 | 0.8 | 0.7 | 5.3 |
| 2000 | 206.4 | 150.7 | 106.1 | 75.4 | 62.8 | 84.2 | 68.3 | 37.0 | 10.6 | 5.3 | 2.9 | 1.8 | 1.0 | 0.9 | 0.9 | 0.6 | 0.3 | 0.3 | 0.5 | 0.6 | 4.9 |
| 2001 | 223.8 | 169.0 | 123.4 | 86.8 | 61.7 | 51.1 | 66.8 | 45.9 | 14.1 | 4.7 | 2.6 | 1.8 | 1.1 | 0.7 | 0.6 | 0.6 | 0.5 | 0.3 | 0.2 | 0.4 | 4.5 |
| 2002 | 176.9 | 183.3 | 138.3 | 101.0 | 71.1 | 50.3 | 40.1 | 43.6 | 16.8 | 6.6 | 3.0 | 1.7 | 1.2 | 0.8 | 0.5 | 0.5 | 0.5 | 0.4 | 0.2 | 0.2 | 4.0 |
| 2003 | 119.7 | 144.8 | 150.0 | 113.3 | 82.7 | 57.9 | 39.6 | 26.7 | 17.3 | 8.3 | 4.4 | 2.0 | 1.2 | 0.9 | 0.6 | 0.4 | 0.4 | 0.4 | 0.3 | 0.2 | 3.4 |
| 2004 | 121.3 | 98.0 | 118.6 | 122.8 | 92.7 | 67.4 | 43.2 | 23.7 | 9.5 | 7.1 | 4.9 | 3.0 | 1.3 | 0.8 | 0.6 | 0.4 | 0.3 | 0.3 | 0.3 | 0.2 | 2.9 |
| 2005 | 96.3 | 99.3 | 80.2 | 97.1 | 100.5 | 75.6 | 51.0 | 27.3 | 10.1 | 4.5 | 4.5 | 3.5 | 2.0 | 1.0 | 0.6 | 0.5 | 0.3 | 0.2 | 0.2 | 0.3 | 2.5 |
| 2006 | 160.2 | 78.8 | 81.3 | 65.7 | 79.4 | 82.1 | 60.2 | 36.5 | 13.3 | 4.6 | 2.5 | 3.1 | 2.5 | 1.5 | 0.7 | 0.5 | 0.4 | 0.3 | $0.2$ | $0.2$ | 2.3 |
| 2007 | 144.1 | 131.2 | 64.5 | 66.6 | 53.7 | 64.9 | 65.5 | 43.7 | 19.1 | 6.6 | 2.7 | 1.8 | 2.3 | 1.9 | 1.2 | 0.6 | $0.4$ | $0.3$ | $0.2$ | $0.2$ | 2.0 |
| 2008 | 148.1 | 118.0 | 107.4 | 52.8 | 54.5 | 43.9 | 52.6 | 50.1 | 24.7 | 10.7 | 4.3 | 1.8 | 1.3 | 1.8 | 1.5 | 0.9 | 0.5 | 0.3 | 0.3 | 0.2 | 1.8 |

Table 11: Fishing mortality-at-age matrix for case 14 a - starting in 1975 assuming equilibrium in 1960.

|  | 0 |  |  |  |  |  |  |  |  |  |  | 11 | 12 |  | 14 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1960 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0016 | 0.0044 | 0.0047 | 0.0035 | 0.0021 | 0.0015 | 0.0010 | 0.0007 | 0.0005 | 0.0004 | 0.0003 | 00 | 0.0001 | 00 | 0.0001 |  |
| 1961 | 0.000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |  |  |  |  |  |  |  |  | 0.0001 | 0.0001 | 0.0001 | . 0001 |  |
|  | 0.000 | 0.000 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1963 | 0. | 0.000 | 0.000 | 0.00 | 0.00 |  | 0.0028 | 0.007 | 0.0082 | 0.0062 | 0.003 | 0.0025 | 0.0 |  | 0.0009 |  |  | 0.0003 | 0002 | 0.0002 | . 0001 | 0.0048 |
| 1964 | 0.00 | 0.00 | 0.00 | 0.00 | 0.000 | 0.0011 | 0.0073 | 0.0202 | 0.0218 | 0.0163 | 0.009 | 0.006 | 0.00 | 0.0 | 0.0024 | 0.0 | 0.001 | 0.00 | 0.0006 | 0.0004 | . 0003 |  |
| 1965 | 0.000 | 0.0000 | 0.0000 | 0.0001 | 0.0004 | 0.0026 | 0.0175 | 0.0491 | 0.0530 | 0.0394 | 0.0227 | 0.016 | 0.0113 | 0.008 | 0.0057 | 0.004 | 0.002 | 0.002 | 0.0014 | 0.0010 | 0.0007 | 07 |
| 1966 | 0.000 | 0.0000 | 0.0000 | 0.0001 | 0.0007 | 0.0050 | 0.0347 | 0.098 | 0.107 | 0.078 | 0.0451 | 0.0318 | 0.022 | 0.015 | 0.0112 | 0.00 | 0.005 | 0.00 | 0.0028 | 0.0020 | . 0014 | 16 |
| 1967 | 0.0 | 0.000 | 0.0000 | 0.0002 | 0.0011 | 0.0073 | 0.050 | 0.1462 | 0.158 | 0.116 | 0.06 | 0.0462 | 0.032 | 0.023 | 0.016 | 0.011 | 0.008 | 0.005 | 0.0041 | 0.0029 | 0.002 |  |
| 1968 | 0.000 | 0.000 | 0.000 | 0.000 | 0.0014 | 009 | 0.06 | 0.19 | 0.21 | 0.15 | 0.086 | 0.06 | 0.04 | 0.03 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 00 |  |
|  | 0.000 | 0.000 | 0.000 | , | 001 | 0.0117 | . |  |  |  |  |  |  | 0.03 |  | 0.01 | 0.01 | 0.0093 | 0.0066 | 0.0047 | 0.0033 |  |
| 1970 | 0. |  | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.0071 |  |  |  |
| 1971 | 0.000 | 0. | 0.00 | , | $0.001$ |  | 0.06 |  | 0.20 |  |  | 0.0 |  | , |  | 0.01 | 0.01 | 0.0072 | . 00 |  |  |  |
| 1972 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.01 | 0.07 | 0.2288 | 0.24 | 0.180 | 0.100 | 0.070 | 0.0 | 0.03 | 0.024 | 0.01 | 0.01 | 0.008 | 0.00 | 0.0043 | . 00 | 0.1411 |
| 1973 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0016 | 0.0108 | 0.0762 | 0.2266 | 0.246 | 0.178 | 0.099 | 0.069 | 0.048 | 0.034 | 0.0243 | 0.017 | 0.012 | 0.00 | 0.0061 | 0.0043 | 0.0031 | 0.1397 |
| 1974 | 0.000 | 0.0000 | 0.0000 | 0.0002 | 0.0015 | 0.0104 | 0.0732 | 0.2170 | 0.2360 | 0.1711 | 0.095 | 0.067 | 0.04 | 0.033 | 0.023 | 0.016 | 0.011 | 0.00 | 0.0059 | 0.0041 | . 002 | 0.1339 |
| 1975 | 0.000 | 0.0000 | 0.0000 | 0.0002 | 0.0017 | 0.0034 | 0.041 | 0.1286 | 0.233 | 0.2825 | 0.2319 | 0.073 | 0.051 | 0.036 | 0.025 | 0.0181 | 0.0128 | 0.0091 | 0.0064 | 0.0045 | 003 | 0.1535 |
| 1976 | 0.00 | 0.000 | 0.000 | 0.000 | 0.001 | 002 | 0.03 | 0.109 | 0.19 | 0.23 | 0.19 | 0.063 | 0.04 | 0.0312 | 0.022 | 0.015 | 0.01 | 0.00 | 0.0055 | 0.0039 | . 002 |  |
| 197 | 0.0 | 0.000 | 0.000 | 0002 | . 001 | 0.0233 | -11 |  |  |  | 0. |  |  |  |  | 0.01 | 0.01 | 0.00 | 0.00 | 0.0037 | . |  |
| 1978 |  | 0.000 | 0.000 |  | 0.0017 |  |  |  |  |  |  |  |  |  |  |  |  | 0.0093 | , | 47 |  |  |
|  | 0.00 | 0.0000 | 0.000 | 0.0002 | 0.0012 | 0.0208 | 0.10 |  |  |  | 0.2812 |  |  |  |  |  |  |  |  |  |  |  |
|  | 0.00 | 0.000 | 0.000 | 00 | . 00 | 0.0264 | 0.1339 | 0.3272 | 0.4211 | 0.3503 | 371 | 069 | 04 | 03 | 02 | . 01 | . 0 | . 00 | 0.0060 | 0.00 | 0.0030 |  |
|  | 0.000 | 0.000 | 0.000 | 0.000 | 002 | 00 | . 06 | 0.2584 | . 49 | 0.436 | 0.28 | 0.092 | 0.06 | 0.04 | . 03 | 0.02 | 0.01 | 01 | . 0 | 0.00 | 0.0040 |  |
| 1982 | 0.000 | 0.000 | 0.000 | 0.000 | 001 | 00 | . 05 | 0.1985 | 0.3 | 0.328 | 0.21 | 0.072 | 0.050 | 0.03 | 0.025 | 0.01 | 0.012 | 0.00 | 0.00 | 0.0045 | . 00 | 0.1951 |
| 1983 | 0.00 | 0.000 | 0.000 | 0.0002 | 0015 | 0.000 | 0.06 | 0.233 | 0.32 | 0.25 | 0.14 | 0.0680 | 0.04 | 0.03 | 0.023 | 0.01 | 0.011 | 0.00 | 0.005 | 0.0042 | . 00 | 30 |
| 1984 | 0.000 | 0.0000 | 0.0000 | 0.0002 | 0.0016 | 0.0096 | 0.068 | 0.2416 | 0.3385 | 0.267 | 0.150 | 0.0703 | 0.0493 | 0.034 | 0.024 | 0.0173 | 0.0122 | 0.0087 | 0.0061 | 0.0043 | 0.0031 | 4 |
| 198 | 0. | 0.000 | 0.0000 | 0.000 | 0.0011 | 0.021 | 0.073 | 0.16 | 0.215 | 0.11 | 0.05 | 0.046 | 0.0325 | 0.022 | 0.0162 | 0.0115 | 0.0081 | 0.005 | 0.0041 | 0.0029 | 0.0020 | 0.1063 |
| 1986 | 0.0000 | . | 0.000 | 0.000 | 0.0010 | 0.0192 | 0.066 | 0.1498 | - | - | - | 0.0418 | 0.0294 |  | . | 0.0 | 0.00 | 0.00 | 0.00 | 0.0026 | 0.001 |  |
| 1987 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0015 | 0.0040 | 0.06 | 0.3613 |  |  |  |  |  |  |  | 0.0163 | 0.0115 | 0.0081 | . |  | 0.0029 |  |
|  | 0.0 | 0.000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.0052 |  |  |  |  |
|  | 0.0 | 0. | 0.0000 | 0.0002 | $0.0013$ | 0.0044 | 0.0515 | 0.17 | 0.15 |  |  |  |  |  |  |  |  | 0.0069 | 0.0049 | 0.0035 |  |  |
| 1990 | 0.000 | 0.0000 | 0.0001 | 0.0004 | 0.0030 | 0.010 | 0.124 | - | 0.41 | 0.2 | 0.226 | 0.13 | 0.094 | 0.06 | 0.04 | 0.03 | 0.02 | 0.01 | 0.0115 | 0.0081 | 0.0058 |  |
| 1991 | 0.00 | 0.0000 | 0.0001 | 0.0007 | 0.0046 | 0.054 | 0.1540 | 0.4322 | 0.6459 | 0.5695 | 0.3544 | 0.2148 | 0.1474 | 0.102 | 0.0714 | 0.050 | 0.03 | 0.0249 | 0.0176 | 0.0124 | 0.0088 |  |
| 1992 | 0.00 | 0.000 | 0.0001 | 0.0008 | 0053 | 0.0645 | 0.1825 | 0.5280 | 0.8123 | 0.7083 | 0.4290 | 0.2561 | 0.1746 | 0.1206 | 0.0840 | 0.0588 | 0.0413 | 0.0291 | 0.0206 | 0.0145 | 0.0103 | 0.45 |
| 1993 | 0.000 | 0.000 | 0.0001 | 0.000 | 0.0054 | 0.398 | 0.534 | 0.670 | 0.691 | 0.653 | 0.5185 | 0.2591 | 0.1766 | 0.1219 | 0.0849 | 0.0594 | 0.0418 | 0.0294 | 0.0208 | 0.0147 | 0.0104 | 0.5778 |
| 1994 | 0.000 | 0.000 | 0.000 | 0.000 | 0.006 | 0.47 | 0.63 | 0.81 | 0.84 | 0.792 | 0.619 | 0.301 | 0.204 | 0.14 | 0.09 | 0.068 | 0.04 | 0.0337 | 0.0238 | 0.0168 | 0.0119 | 0.6970 |
| 1995 | 0. | 0.000 | 0.000 | . | 0.0042 | 0.0413 | , | 0.3579 |  | 0 | 0.175 |  |  | 0.09 | 0.06 | 0.04 | 0.03 | 0.02 | 0.01 | 0.0115 |  |  |
|  |  | . | . | 0.0007 | 0.00 |  | 0.17 |  |  |  |  |  |  |  | . 07 |  |  |  |  |  |  |  |
|  | 0.000 | 0.000 | 0.000 | 0.000 | , | ,008 | 0.1896 | 0.505 |  | , | -225 |  | 012 |  | . | 0.04 | . |  | . | 0.0113 |  |  |
| 19 | 0.0000 | 0.0000 | 0.0001 | 0.0006 | 0.0039 | 0.0547 | 0.1763 | 0.4642 | 0.45 | 0.343 | 0.2551 | 0.179 | 0.12 | 0.086 | 0.0604 | 0.04 | 0.02 | 0.0211 | 0.0149 | 0.0106 | 0.00 | 0.2919 |
| 1999 | 0.0000 | 0.0000 | 0.0001 | 0.0007 | 0.0049 | 0.0272 | 0.1634 | 0.6012 | 0.4963 | 0.3958 | 0.2505 | 0.2347 | 0.1605 | 0.1111 | 0.0775 | 0.0543 | 0.0382 | 0.0269 | 0.0190 | 0.0135 | 0.0095 | 0.3224 |
| 2000 | 0.0000 | 0.0000 | 0.0001 | 0.0009 | 0.0058 | 0.0322 | 0.1965 | 0.7647 | 0.6214 | 0.4888 | 0.3040 | 0.2842 | 0.1929 | 0.1328 | 0.0923 | 0.0646 | 0.0454 | 0.0320 | 0.0225 | 0.0159 | 0.0113 | 0.4013 |
| 2001 | 0.0000 | 0.0000 | 0.0001 | 0.0006 | 0.0044 | 0.0420 | 0.2255 | 0.8076 | 0.5610 | 0.2323 | 0.2196 | 0.2041 | 0.1403 | 0.0974 | 0.0681 | 0.0478 | 0.0337 | 0.0237 | 0.0168 | 0.0119 | 0.0084 | 0.34 |
| 2002 | 0.0000 | 0.0000 | 0.0001 | 0.0006 | 0.0040 | 0.0389 | 0.2078 | 0.7235 | 0.5092 | 0.2140 | 0.2024 | 0.1882 | 0.1297 | 0.0902 | 0.0631 | 0.0443 | 0.0312 | 0.0220 | 0.0156 | 0.0110 | 0.0078 | 0.3160 |
| - | 0.0000 | 0.0000 | 0.0001 | 0.0007 | 0.0047 | 0.0925 | 0.3147 | 0.8372 | 0.6882 | 0.3206 | 0.1766 | 0.2211 | 0.1516 | 0.1051 | 0.0733 | 0.0514 | 0.0362 | 0.0255 | 0.018 | 0.0128 | 0.009 | 0.4050 |
| 2004 | 0.0000 | 0.0000 | 0.0001 | 0.000 | 0.004 | . 077 |  | 6534 | 0.5463 | 0.2640 | 0.1473 | 0.1837 | 0.1267 | . 0881 | 0.0617 | 0.0433 |  | 0.021 | 0.0152 | 0.0108 |  | 0.3247 |
| 200 | 0.0000 | $0.0000$ | $0.000$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.0107 |  |  | 0.3013 |
| 2006 | 0.0000 | 0.0000 | 0.0001 | 0.0004 | 0.0025 | 0.0249 | 0.1200 | 0.4463 | 0.5030 | 0.322 | 0.1531 | 0.1116 | 0.0778 | 0.0546 | 0.0384 | 0.0271 | 0.0191 | 0.0135 | 0.0096 | 0.0068 | 0.0048 | 0.2616 |
| 2007 | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0018 | 0.0102 | 0.0683 | 0.3706 | 0.3761 |  | 0.1894 | 0.0 | 0.055 | -0, | -0.025 | 0.019 | 0.01 | 0.00 | 0.00 | 0.0049 | 0.0035 | 0.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


|  | $B^{S p}{ }_{2008}$ | $B^{s p}{ }_{2008} / K$ | $B^{e x p} 2008$ | MSYL ${ }^{s p}$ | MSY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| XSA | 15 |  | 68 |  |  |
| New Baseline | $\begin{gathered} 353 \\ (0.60) \end{gathered}$ | $\begin{gathered} 0.59 \\ (0.34) \end{gathered}$ | 326 | $\begin{gathered} 0.17 \\ (0.15) \end{gathered}$ | $\begin{gathered} 43 \\ (0.26) \end{gathered}$ |
| 5) as New Baseline (NB) with a survey $\rho$ for each series | $\begin{gathered} 412 \\ (0.58) \end{gathered}$ | $\begin{gathered} 0.64 \\ (0.30) \end{gathered}$ | 328 | $\begin{gathered} 0.17 \\ (0.14) \end{gathered}$ | $\begin{gathered} 47 \\ (0.28) \end{gathered}$ |
| 6а) $h=0.7$ | $\begin{gathered} 342 \\ (0.67) \end{gathered}$ | $\begin{gathered} 0.56 \\ (0.40) \end{gathered}$ | 296 | $\begin{gathered} 0.28 \\ (0.13) \end{gathered}$ | $\begin{gathered} 33 \\ (0.26) \end{gathered}$ |
| 6b) $h=0.5$ | $169$ | $\begin{gathered} 0.31 \\ * \end{gathered}$ | 181 | $\begin{gathered} 0.37 \\ * \end{gathered}$ | $\begin{gathered} 21 \\ * \end{gathered}$ |
| 7) Ricker like ( $h$ and $\gamma$ estimated) | $44$ $(0.38)$ | $\begin{gathered} 0.10 \\ (0.33) \end{gathered}$ | 120 | $\begin{gathered} 0.26 \\ (0.22) \end{gathered}$ | $\begin{gathered} 22 \\ (0.13) \end{gathered}$ |
| 8) $\sigma_{R}=0.3$ | $703$ | $0.78$ | 548 | $\begin{gathered} 0.17 \\ * \end{gathered}$ | $\begin{gathered} 64 \\ * \end{gathered}$ |
| 9a) 1990-1994 catches increased by 10000 t | $\begin{gathered} 492 \\ (0.46) \end{gathered}$ | $\begin{gathered} 0.68 \\ (0.23) \end{gathered}$ | 412 | $\begin{gathered} 0.17 \\ (0.11) \end{gathered}$ | $\begin{gathered} 52 \\ (0.24) \end{gathered}$ |
| 9b) 1990-1994 catches decreased by 10000 t | $\begin{gathered} 26 \\ (0.42) \end{gathered}$ | $\begin{gathered} 0.08 \\ (0.40) \end{gathered}$ | 126 | $\begin{gathered} 0.18 \\ (0.18) \end{gathered}$ | $\begin{gathered} 27 \\ (0.04) \end{gathered}$ |
| 10) Flat commercial selectivity from age 10 | $\begin{gathered} 285 \\ (0.66) \end{gathered}$ | $\begin{gathered} 0.54 \\ (0.40) \end{gathered}$ | 282 | $\begin{gathered} 0.17 \\ (0.18) \end{gathered}$ | $\begin{gathered} 39 \\ (0.25) \end{gathered}$ |
| 11) Four commercial selectivity periods | $\begin{gathered} 637 \\ (0.60) \end{gathered}$ | $\begin{gathered} 0.80 \\ (0.24) \end{gathered}$ | 465 | $\begin{gathered} 0.17 \\ (0.12) \end{gathered}$ | $\begin{gathered} 57 \\ (0.36) \end{gathered}$ |
| 12a) commercial $\sigma_{\Omega}=4.0$ | $\begin{gathered} 370 \\ (0.57) \end{gathered}$ | $\begin{gathered} 0.61 \\ (0.31) \end{gathered}$ | 335 | $\begin{gathered} 0.17 \\ (0.15) \end{gathered}$ | $\begin{gathered} 44 \\ (0.26) \end{gathered}$ |
| 12b) commercial $\sigma_{\Omega}=0.5$ | $\begin{gathered} 29 \\ (0.27) \end{gathered}$ | $\begin{gathered} 0.08 \\ (0.24) \end{gathered}$ | 136 | $\begin{gathered} 0.18 \\ (0.13) \end{gathered}$ | $\begin{gathered} 28 \\ (0.04) \end{gathered}$ |
| 12c) survey $\sigma_{\Omega}=1.0$ | $\begin{gathered} 769 \\ (0.67) \end{gathered}$ | $\begin{gathered} 0.87 \\ (0.24) \end{gathered}$ | 498 | $\begin{gathered} 0.17 \\ (0.11) \end{gathered}$ | $\begin{gathered} 63 \\ (0.43) \end{gathered}$ |
| 13) $M=0.15$ | $\begin{gathered} 58 \\ (0.41) \end{gathered}$ | $\begin{gathered} 0.10 \\ (0.37) \end{gathered}$ | 133 | $\begin{gathered} 0.19 \\ (0.17) \end{gathered}$ | $\begin{gathered} 28 \\ (0.05) \end{gathered}$ |
| 14a) start in 1975: unexploited equilibrium in 1960 | $\begin{gathered} 37 \\ (0.42) \end{gathered}$ | $\begin{gathered} 0.10 \\ (0.38) \end{gathered}$ | 135 | $\begin{gathered} 0.17 \\ (0.16) \end{gathered}$ | $\begin{gathered} 28 \\ (0.04) \end{gathered}$ |
| 14b) start in 1975: estimate $\theta$ and $\zeta$ | $\begin{gathered} 39 \\ (0.45) \end{gathered}$ | $\begin{gathered} 0.12 \\ (0.42) \end{gathered}$ | 135 | $\begin{gathered} 0.18 \\ (0.17) \end{gathered}$ | $\begin{gathered} 27 \\ (0.05) \end{gathered}$ |
| 14c) start in 1975: estimate $\theta$, start with XSA estimated proportions-at-age in 1975 | $\begin{gathered} 23 \\ (0.48) \end{gathered}$ | $\begin{gathered} 0.06 \\ (0.48) \end{gathered}$ | 122 | $\begin{gathered} 0.18 \\ (0.19) \end{gathered}$ | $\begin{gathered} 29 \\ (0.07) \end{gathered}$ |

Table 12: Summary key statistics for XSA and all the SCAA sensitivities (4 to 14 and Production-type model 2)

|  | Median | lower $5 \% \text {-ile }$ | upper <br> 5\%-ile | Median | lower5\%ile | $\begin{gathered} \text { upper } 5 \%- \\ \text { ile } \\ \hline \end{gathered}$ | Median | lower5\%ile | $\begin{gathered} \text { upper } 5 \%- \\ \text { ile } \\ \hline \end{gathered}$ | Median | lower5\%ile | $\begin{gathered} \text { upper } 5 \% \text { - } \\ \text { ile } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $B^{S p} 2008$ | 263 | 132 | 491 | 263 | 132 | 491 | 263 | 132 | 491 | 263 | 132 | 491 |
| $B^{s p}{ }_{2008} / K$ | 0.51 | 0.32 | 0.71 | 0.51 | 0.32 | 0.71 | 0.51 | 0.32 | 0.71 | 0.51 | 0.32 | 0.71 |
| $B^{s p} 2013$ | 338 | 195 | 590 | 338 | 195 | 590 | 338 | 195 | 590 | 266 | 143 | 483 |
| $B^{s p}{ }_{2013} / K$ | 0.66 | 0.47 | 0.85 | 0.66 | 0.47 | 0.85 | 0.66 | 0.47 | 0.85 | 0.52 | 0.34 | 0.70 |
| $B^{s p} 2018$ | 433 | 295 | 674 | 433 | 295 | 674 | 433 | 295 | 674 | 181 | 111 | 302 |
| $B^{s p}{ }_{2018} / K$ | 0.84 | 0.70 | 0.98 | 0.84 | 0.70 | 0.98 | 0.84 | 0.70 | 0.98 | 0.35 | 0.27 | 0.44 |
| $B^{s p}{ }_{2028}$ | 549 | 421 | 769 | 549 | 421 | 769 | 549 | 421 | 769 | 132 | 100 | 189 |
| $B^{s p}{ }_{2028} / K$ | 1.06 | 1.02 | 1.10 | 1.06 | 1.02 | 1.10 | 1.06 | 1.02 | 1.10 | 0.26 | 0.24 | 0.27 |
| F0.1 | 0.43 | 0.37 | 0.48 | 0.43 | 0.37 | 0.48 | 0.43 | 0.37 | 0.48 | 0.43 | 0.37 | 0.48 |
| $C_{2008}$ | 24175 | 24175 | 24175 | 24175 | 24175 | 24175 | 24175 | 24175 | 24175 | 24175 | 24175 | 24175 |
| $C_{2009}$ | 0 | 0 | 0 | 16000 | 16000 | 16000 | 22750 | 22750 | 22750 | 66560 | 44719 | 102391 |
| $C_{2010}$ | 0 | 0 | 0 | 16000 | 16000 | 16000 | 22750 | 22750 | 22750 | 47236 | 33886 | 69586 |
| $C_{2011}$ | 0 | 0 | 0 | 16000 | 16000 | 16000 | 22750 | 22750 | 22750 | 38723 | 28284 | 56606 |
| $C_{2012}$ | 0 | 0 | 0 | 16000 | 16000 | 16000 | 22750 | 22750 | 22750 | 34807 | 25605 | 50873 |
| $C_{2013}$ | 0 | 0 | 0 | 16000 | 16000 | 16000 | 22750 | 22750 | 22750 | 37899 | 27537 | 55590 |
| $C_{2018}$ | 0 | 0 | 0 | 16000 | 16000 | 16000 | 22750 | 22750 | 22750 | 40001 | 31318 | 54924 |
| $\mathrm{C}_{2028}$ | 0 | 0 | 0 | 16000 | 16000 | 16000 | 22750 | 22750 | 22750 | 38944 | 31023 | 53115 |

Table 13: MCMC medians and $90 \%$ probability intervals of projected spawning biomass (in absolute terms and relative to pre-exploitation level) in 2008, 2013, 2018 and 2018 under a series of catch scenarios. The expected catches are also shown for a series of years.

|  |  |  | Total |  |
| :--- | :---: | :---: | :---: | :---: |
|  | MLE | Median | lower5\%- upper5\%- <br> ile | ile |
| $K^{s p}$ | 576 | 516 | 410 | 708 |
| $h^{3 p}$ | 0.90 | 0.90 | 0.90 | 0.90 |
| $B^{s p}{ }_{2008}$ | 372 | 262 | 132 | 494 |
| $B^{s p}{ }_{2008} / K$ | 0.65 | 0.51 | 0.32 | 0.71 |
| $\mathrm{MSYL}^{s p}$ | 0.17 | 0.17 | 0.17 | 0.17 |
| $\mathrm{MSY}^{2 p}$ | 43 | 38 | 31 | 51 |

Table 14: Maximum likelihood estimates (MLE) and MCMC medians and $90 \%$ probability intervals for New Baseline SCAA assessment. Note that $h$ was fixed at 0.9 for the MCMC computations.

|  |  |  | Total |  |
| :--- | :---: | :---: | :---: | :---: |
|  | MLE | Median | lower5\%- upper5\%- <br> ile | ile |
| $K^{s p}$ | 500 | 1003 | 483 | 2827 |
| $h^{3 p}$ | 0.89 | 0.72 | 0.37 | 0.93 |
| $B^{s p}{ }_{2008}$ | 250 | 813 | 197 | 2964 |
| $B^{s p}{ }_{2008} / K$ | 0.50 | 0.82 | 0.40 | 1.05 |
| MSYL $^{s p}$ | 0.13 | 0.27 | 0.15 | 0.45 |
| $\mathrm{MSY}^{2}$ | 41 | 53 | 25 | 167 |

Table 15: Maximum likelihood estimates (MLE) and MCMC medians and $90 \%$ probability intervals for the Production-type Model 2.


Fig. 1: Total, exploitable (5-9) and spawning (10+) biomass trajectories for the Baseline B2 of Butterworth and Rademeyer (2009a) cases 1 and 4 (New Baseline), and XSA (Healey and Mahé, 2008) assessments.


Fig. 2: Standardised residual plots for the survey proportions-at-age data for a series of SCAA assessments.


Fig. 3: Survey and commercial fishing selectivities-at-age estimated for the New Baseline assessment.


Fig. 4: Fits of the New Baseline assessment to the abundance indices provided by the survey series.


Fig. 5: Survey standardised residuals for the New Baseline assessment. Residuals are shown both before ("eps") and after ("lambda") adjustment for serial correlation.


Fig. 6: Stock-recruitment curve and time series of standardised stock-recruitment residuals and recruitments for the New Baseline model ( $\sigma_{R}=0.25, h=0.9$, top row), variant 6 b ( $h=0.5$, second row), variant 7 (Ricker-type, third row) and variant 8 ( $\sigma_{R}=0.3$, bottom row).


Fig. 7: Comparison of total (1+), exploitable (5-9) and spawning (10+) biomass trajectories for the New Baseline, alternative assumptions regarding the stock-recruitment relationship and XSA (Healey and Mahé, 2008) assessments.


Fig. 8: Comparison of total (1+), exploitable (5-9) and spawning (10+) biomass trajectories for the New Baseline, alternative assumptions regarding the total catches and commercial selectivity and XSA (Healey and Mahé, 2008) assessments.


Fig. 9: Commercial selectivity for the New Baseline, sensitivity 10 with flat selectivity from age 10 and XSA.


Fig. 10: Commercial selectivity for each of the four periods for sensitivity 11.


Fig. 11: Comparison of total (1+), exploitable (5-9) and spawning (10+) biomass trajectories for the New Baseline, sensitivities with alternative $\sigma_{\Omega}$, and XSA assessments.


Fig. 12: Standardised residual plots for the commercial and survey proportions-at-age data for a series of SCAA assessments.


Fig. 13: Comparison of total (1+), exploitable (5-9) and spawning (10+) biomass trajectories for the New Baseline, sensitivity 13 with $M=0.15$ and XSA assessments.


Fig. 14: Comparison of total (1+), exploitable (5-9) and spawning (10+) biomass trajectories for the New Baseline, sensitivities starting in 1975 and XSA assessments.


Fig. 15: Comparison of total (1+), exploitable (5-9) and spawning (10+) biomass trajectories for the New Baseline, the production-type model 2) and XSA assessments.


Fig. 16: Comparison of total (1+), exploitable (5-9) and spawning (10+) biomass trajectories (in absolute terms and relative to pre-exploitation level) for the New Baseline and five retrospective assessments.


Fig. 17: Spawning (10+) and exploitable (5-9) biomass trajectories for the New Baseline assessment projected for a 20-year period under a series of catch scenarios.


Fig. 18: Comparison of spawning (10+) and exploitable (5-9) biomass trajectories for the New Baseline, Case 14a (starting in 1975), the production-type model 2 and XSA assessments, projected for a 20 -year period under a constant catch of 16000 t (top row) and 22750 t (bottom row).


Fig. 19: Historic and projected catch under a F0.1 strategy for the New Baseline, Case 14a (starting in 1975) and the Production-type Model 2 assessments.


Fig. 20: Median (thick line) and $90 \%$ probability envelope (shaded area) spawning (10+) and exploitable (5-9) biomass trajectories (in absolute terms and relative to pre-exploitation level) for the New Baseline SCAA assessment. The MLE are also shown (dotted line). The projections are for a constant annual catch of 27500 t .


Fig. 21: Median (thick line) and $90 \%$ probability envelopes (shaded area) spawning (10+) and exploitable (5-9) biomass trajectories (in absolute terms and relative to pre-exploitation level) for the Production-type Model 2 assessment. The MLE are also shown (dotted line). The projections are for a constant annual catch of 27500 t .

