

Adult Sardine Bycatch with Red-Eye

de Moor, C.L.#

The adult sardine bycatch with red-eye was decreased from 10 000t under OMP-04 to 3 500t under OMP-08. During the development and testing of OMP-08, two alternative options for the red-eye bycatch were tested:

- i) the sardine adult bycatch with red-eye will remain at 3 500t (rounded up from the historic minimum, to be conservative) over the projection period; or
- ii) the average red-eye catch doubles over the next 5 years, such that bycatch increases from 3 500t in 2007 to 7 000t in 2011 and remains at 7 000t for the remainder of the projection period.

Table 1 lists the summary statistics of alternative ii) compared to that for alternative i) which was adopted for OMP-08. The results at the time the decision was made to use option i) are shown for "Straw 3 OMP-08" as well as the comparative summary statistics for the final implemented OMP-08.

1

[#] MARAM (Marine Resource Assessment and Management Group), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701, South Africa. Email: carryn.demoor@uct.ac.za.

Table 1. Key summary statistics for the trade-off point for "Straw3" and the final implemented OMP-08, assuming an annual adult sardine bycatch with red-eye of 3 500t and assuming that the adult sardine bycatch with red-eye increases from 3 500t to 7 000t over the next 5 years.

	"Straw 3" OMP-08		Final OMP-08	
	Base Case	Higher adult sardine bycatch	Base Case	Higher adult sardine bycatch
β	0.11767	0.11767	0.097	0.097
α_{ns}	0.1375	0.1375	0.78	0.78
$lpha_{ads}$	0.275	0.275	1.17	1.17
Percentage of times				
Sardine Exceptional Circumstances are				
Declared (2008-2027)	3.4%	3.4%	4.7%	5.0%
Percentage of times	5.1,0	51170	, 70	2.070
Sardine Exceptional				
Circumstances are				
Declared (2008-2010) Percentage of times	1.6%	1.6%	2.7%	2.7%
Anchovy Exceptional				
Circumstances are				
Declared (2008-2027)	15.2%	15.2%	8.5%	8.5%
$risk_S$	0.179	0.180	0.178	0.185
\overline{C}^{S} (2008-2027)	214	214	190	189
AAV ^S (2008-2027)	0.26	0.26	0.24	0.24
\overline{C}^{S} (2008-2010)	135	135	121	121
AAV ^S (2008-2010)	0.29	0.29	0.25	0.25
$\overline{B_{2027}^S/K_{non-peak}^S}$	0.68	0.68	0.68	0.68
$\overline{B_{2027}^S/Risk^S}$	10.54	10.53	10.45	10.35
$\overline{B_{2027}^{S}/B_{2007}^{S}}$	5.71	5.70	5.66	5.60
$B_{\min}^{S}/K_{non-peak}^{S}$	0.26	0.26	0.26	0.26
$\overline{B_{\min}^S/Risk^S}$	1.76	1.76	1.78	1.77
risk _A	0.243	0.243	0.097	0.098
\overline{C}^{A} (2008-2027)	179	179	381	381
AAV A (2008-2027)	0.45	0.45	0.30	0.30
\overline{C}^{A} (2008-2010)	223	223	458	458
AAV A (2008-2010)	0.44	0.44	0.27	0.27
$\overline{B_{2027}^A/K^A}$	0.73	0.73	0.61	0.61
$\overline{B_{2027}^A/Risk^A}$	1.99	1.99	1.81	1.81
$\overline{B_{2027}^{A}/B_{2007}^{A}}$	1.23	1.23	0.84	0.84
B_{\min}^A/K^A	0.15	0.15	0.14	0.14
$\overline{B_{\min}^A/Risk^A}$	0.33	0.33	0.39	0.39