# PRELIMINARY RESULTS FOR A COMBINED ASSESSMENT OF ALL SEVEN SOUTHERN HEMISPHERE HUMPBACK WHALE BREEDING STOCKS 

Andrea Müller, Doug S. Butterworth and Susan J. Johnston ${ }^{1}$<br>Contact e-mail: andrea.muller@uct.ac.za


#### Abstract

This paper reports preliminary results from the development of an assessment process that aims to include all seven Southern Hemisphere humpback whale breeding stocks in a single joint assessment, with the purpose of allowing highlatitude historic catches (i.e. catches taken south of $40^{\circ} \mathrm{S}$, where mixing amongst the populations occurs), to be allocated to breeding stocks in proportion to abundance, rather than on set ratios. The approach can be broadened to allow for uncertainties in the placement of the boundaries assumed to link high latitude catches to breeding stocks. Because of the interaction between populations arising from the procedure to allocate high latitude catches amongst breeding stocks, the conventional SIR-based Bayesian approach proved impractical to expand. Instead uniform priors on the various preexploitation level ( $K$ ) parameters were assumed with the intent to later iteratively adjust these to account for their being informative about the values of the intrinsic growth rate ( $r$ ) parameters. Initial results (which will need later refinement) are presented purely for the purposes of illustrating the application of the approach.


KEYWORDS: HUMPBACK WHALES, MAXIMUM LIKELIHOOD, BAYESIAN, MCMC

## INTRODUCTION

The Southern Hemisphere humpback whale populations have been divided into seven breeding stocks for managerial purposes (Findlay et al., 2009):
Breeding stock A: $70^{\circ} \mathrm{W}-20^{\circ} \mathrm{W}$ (linked to Brazil)
Breeding stock B: $20^{\circ} \mathrm{W}-10^{\circ} \mathrm{E}$ (linked to Angola, Gabon)
Breeding stock C: $10^{\circ} \mathrm{E}-60^{\circ}$ E (linked to Mozambique, Comores, Madagascar)
Breeding stock D: $60^{\circ} \mathrm{E}-120^{\circ} \mathrm{E}$ (linked to Western Australia)
Breeding stock E: $120^{\circ} \mathrm{E}-170^{\circ} \mathrm{W}$ (linked to Eastern Australia, Tonga, New Zealand)
Breeding stock F: $170^{\circ} \mathrm{W}-120^{\circ} \mathrm{W}$ (linked to Oceana)
Breeding stock G: $120^{\circ} \mathrm{W}-70^{\circ} \mathrm{W}$ (linked to Oceana)
The regions above refer to the breeding areas (north of $40^{\circ} \mathrm{S}$ ).
Over the years various assessments have been conducted for the respective individual stocks. One recurring problem throughout these assessments has been the question of catch allocation. Catch records give historic catches by position. In the low latitude areas it is fairly straightforward to allocate the catches to the various breeding stocks because of their linkages to areas close to the coast. The high latitude catches in and near the Antarctic are however more problematic. The populations are known to migrate to the Antarctic for feeding purposes, where mixing between the various breeding populations occurs. Over the years various hypotheses have been proposed to deal with the catch allocation for these high latitude catches (Findlay et al., 2009). The latest of these, referred to as Hypothesis 1 (IWC, 2009), divides the high-latitude waters into nucleus and margin regions, the former being associated with single breeding stocks and the latter with two neighbouring stocks (see Figure 1), and was recommended as a reference case by the Sub-Committee on Southern Hemisphere Humpback Whales. Catches in the margin areas are split 50-50 between neighbouring stocks in this hypothesis.

This assessment aims to combine all breeding stocks into one assessment, thus allowing catches in margin regions to be split in proportion to the abundances of the respective neighbouring populations, rather than by set ratios. This approach, within the Bayesian paradigm, is intended as a first step in a process that can take account of the uncertainty in the placement of the boundaries between these nucleus and margin regions through specifying priors for each, while also avoiding the "double-counting" that effectively takes place in current

[^0]assessment practice when sensitivities explore widening the range from which the high latitude catches from a particular breeding stock might have been taken. It also allows account to be taken of the intrinsic growth rates $r$ for each of the breeding stocks, while not being identical, nevertheless being likely to be somewhat similar to each other.

## DATA

## Historic Catch data

There are two sources of historic catch data.
i) Catches north of $40^{\circ} \mathrm{S}$, given by region and easily allocated to the respective breeding stocks (see Table 1). Records of a series of Russian catches are also available by 10 degree longitude and latitude bands and these catches have been incorporated into Table 1.
ii) Catches south of $40^{\circ} \mathrm{S}$, which are given according to assumed nucleus and margin regions (see Figure 1) and are shown in Table 2.

## Abundance and trend data

These include absolute abundance estimates, relative abundance estimates and tag-recapture information and are all given in Appendix 2.

## METHODS

Each population's dynamics is modeled by the Pella-Tomlinson equation, given in Appendix 1. For catch allocation purposes for regions where more than one stock/sub-stock of whales is present, complete mixing is assumed with catches each year allocated amongst the stocks in proportion to their relative abundances.

## Maximum likelihood procedure

The initial idea was to use the standard Bayesian approach adopted in the past for assessments of individual breeding stocks, where for each such population $i(i \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C} 1, \mathrm{C} 3, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\})$ values of $r^{i}$ and $\ln \tilde{N}_{t \text { arg et }}^{i, o b s}$ are randomly drawn from prior distributions and a downhill simplex method of minimisation is used to calculate $K^{i}$ such that the model estimate of $N_{t a r g}^{i}$ et is identical to $\tilde{N}_{t}^{i, \text { obs }}$ et (for an example of one such assessments see Johnston et al., 2009). However the complexity of the problem owing to the interaction amongst the populations (arising because catches are split in proportion to the population abundances) led to time-intensive processes and poor ability to find solutions necessary to be able to implement the conventional SIR approach to effect the Bayesian integration over priors.
An alternative approach was sought, leading to this assessment using a Markov chain Monte Carlo (MCMC) approach to achieve the Bayesian integration. Here uniform priors are assumed on $r^{i}$ and $K^{i}$, and AD Model Builder is used to obtain a maximum (penalised) likelihood estimate (the penalty corresponding to the log of the joint priors), i.e. a combination of $r^{i}$ and $K^{i}$ values that is the most likely given the abundance and trend data (equations for the likelihood function are given in Appendix 1). Once this maximum likelihood solution has been obtained, the MCMC approach is used to obtain a set of equally likely values of $r^{i}$ and $K^{i}$, thus allowing posterior distributions to be computed.

The exercise reported here intends only to produce some initial results, and these results should be considered as preliminary only. There are problems associated with specifying a uniform prior on $K$ - the model dynamics are such that a uniform prior on $K$ is in fact informative regarding the intrinsic growth rate parameter $r$ given the catch series and prior for recent abundance, and future adjustments will aim to address this issue by varying the priors for $K$ in a way that sees them correspond more closely to post-model pre-data posteriors for recent abundances that are near uniform..

This approach also takes account of the fact that the intrinsic growth rates $r$ for each of the breeding stocks, while not being identical, are nevertheless likely to be somewhat similar to each other. This is done by including a prior that assumes the $r$ values for each population to be "generated" from an underlying normal distribution.

The prior distributions used in this initial illustrative assessment were:
$r^{i} \sim \mathrm{U}[0,0.106]$ (i.e. the same uniform prior for all populations)
$K^{\mathrm{A}} \sim \mathrm{U}[0,35000]$
$K^{\mathrm{B}} \sim \mathrm{U}[0,40000]$
$K^{\mathrm{C} 1} \sim \mathrm{U}[0,25000]$
$K^{\mathrm{C3}} \sim \mathrm{U}[0,25000]$
$K^{\mathrm{D}} \sim \mathrm{U}[0,50000]$
$K^{\mathrm{E}} \sim \mathrm{U}[0,45000]$
$K^{\mathrm{F}} \sim \mathrm{U}[0,25000]$
$K^{\mathrm{G}} \sim \mathrm{U}[0,25000]$
The uninformative $r$ prior is bounded by zero (negative rates of growth are biologically implausible) and 0.106 (this corresponds to the maximum growth rate for the species as agreed by the IWC Scientific Committee (IWC, 2007)). Then further prior information was added by assuming the different $r^{i}$ values to be realisations of a normal distribution of standard deviation 0.02 (see equation A1.16 of Appendix 1). Based on what is known about the respective populations, a large interval was placed around feasible $K$ values to obtain the distribution bounds given above.

## Nmin constraints

Rosenbaum et al. (2006) provides the minimum number of haplotypes for the respective breeding stocks. These values, multiplied by a factor of four, give a lower bound for minimum population numbers, and these constraints will be implemented in future implementations of this assessment as lower bounds.

## RESULTS

Tables 3a and b report the MCMC results for a chain of 10 million, with the initial 1 million discarded for burn in and every $1000^{\text {th }}$ value sampled, to give the median values as well as the $5^{\text {th }}$ and $95^{\text {th }}$ percentiles of $r, K$ and other values of interest for each breeding population. The MCMC appears reasonably close to, but not yet having achieved full convergence. The median population trajectories for the respective models, along with the $90 \%$ probability interval envelopes, are shown in Figures 2a and b. No plots showing fits to data have been included at this stage.

## DISCUSSION

Given the preliminary nature of this exercise whose purpose is primarily an illustration of the approach, an indepth discussion of said results is not entirely warranted, also as the lack of complete convergence of the MCMC may have affected the results. The results seem to favour fairly high $r$ values, with the posterior for breeding stock E concentrated effectively entirely at the upper bound of 0.106 (a result that merits further checking).
The assumption that the $r$ values are normally distributed about some mean value results in populations for which more data are available being a driving component behind the $r$ estimation. This is an added advantage in attempting a combined assessment: that populations for which less data are available can be informed in an internally consistent way by data for the other populations.

Looking forward, convergence is an issue that needs to be addressed. With eight interacting breeding populations, the initial minimisation process is sensitive to the parameter vector used to initiate the minimisation process. Manual exploration of the likelihood profile will hopefully give a better idea as to what the "solution" is; this may in turn assist resolve MCMC convergence difficulties. Following this, the iterative procedure mentioned above that is intended to remove the informative aspects of the uniform priors on $K$ for the $r$ parameters will be pursued, followed by extension of the implementation to allow for priors on the placement of the Antarctic boundaries governing the allocation of high latitude catches amongst breeding stocks.

## ACKNOWLEDGEMENTS

We thank Sharon Hedley, Jennifer Jackson, Alex Zerbini and Michael Noad for their input and advice in the data-compiling stage, and Cherry Allison who provided the catch data. This work was supported by the South African National Research Foundation.

## REFERENCES

Andriolo, A., Kinas, P.G., Engel, M.H., Albuquerque Martins, C.C. 2006. Monitoring humpback whale population in the Brazilian breeding ground, 2002 to 2005, SC/58/SH15.

Baker, C. S., Garrigue, C., Rochelle, C., Madon, B., Poole, M., Hauser, N., Clapham, P., Donoghue, M., Russel, K., O'Callahan, T., Paton, D. and Mattila, D. 2006. Abundance of humpbacks in Oceania (South Pacific) 1999 to 2004. Paper SC/A06/HW51.
Bannister, J.L. and Hedley, S.L. 2001 Southern Hemisphere group IV humpback whales: their status from recent aerial survey. Memoirs of the Queensland Museum. 47: 587-598.

Branch, T.A. 2010. (in press). Humpback whale abundance south of $60^{\circ} \mathrm{S}$ from three complete circumpolar sets of surveys. J. Cetacean Res. Manage. (Special Issue).

Cerchio, S, Ersts, P., Pomilla, C., Loo, J., Razafindrakoto, Y., Leslie, M., Andrianrivelo, N., Minton, G., Dushane, J., Murray, A., Collins, T. and Rosenbaum, H. (2008a) Revised estimation of abundance for breeding stock C 3 of humpback whales, assessed through photographic and genotypic mark-recapture data from Antongil Bay, Madagascar, 2000-2006. IWC document SC/60/SH32.

Cerchio, S., Findlay, K., Ersts, P., Minton, G., Bennet, D., Meyer, M.A., Razafindrakoto, Y., Kotze, P.G.H., Oosthuizen, H., Leslie, M., Andrianarivelo, N. and Rosenbaum, H. 2008b. Initial assessment of exchange between breeding stocks C1 and C3 of humpback whales in the western Indian Ocean using photographic mark-recapture data, 2000-2006. IWC document SC/60/SH33.

Chittleborough, R.G. 1965 Dynamics of two populations of the humpback whale, Megaptera Novaengliae (Borowski). Aust. J. mar. Freshw. Res 16:33-128.
Collins, T., Cerchio, S., Pomilla, C., Loo, J., Carvalho, I., Ngoussono, S. and Rosenbaum, H.C. 2008. Revised estimates for humpback whale breeding stock B1: Gabon. IWC document SC/60/SH28.

Félix, F., Castro, C., Laake,.J.L., Haase, B. and Scheidert, M. (in press). Abundance and survival estimates of the Southeastern Pacific humpback whale stock from 1991-2006 photo-identification surveys in Ecuador. J. Cetacean Res. Manage. (Special Issue).

Findlay, K., Meyer, M, Elwen, S., Kotze, D., Johnson, R., Truter, P., Uamusse, C., Sitoe, S., Wilke, C., Kerwath, S., Swanson, S., Stavarees, L. and J. van der Westhuizen. (in press). Distribution and abundance of humpback whales, Megaptera novaeangliae, off the coast of Mozambique, 2004. (in press). J. Cetacean Res. Manage. (Special Issue).

Findlay, K. and P. Best. 2006. The migration of humpback whales past Cape Vidal, South Africa, and a preliminary estimate of the population increase rate. Paper SC/A06/HW16 submitted to the IWC southern hemisphere humpback workshop, Hobart, April 2006.

Findlay, K., Bannister, J.L., Cerchio, S., Jackson, J., Loo, J., Paton, D., Rosenbaum, H., Weinrich, M. and Zerbini, A. 2009. Allocations of catches of humpback whales (1904-1973) for the IWC comprehensive assessment of Southern Hemisphere humpback whales. Report of an IWC intersessional email group. 33pp.

Hedley, S.L., Bannister, J.L. and Dunlop, R.A. 2008: Group IV Humpback whales: Abundance estimates from aerial and land-based surveys off Shark Bay, Western Australia, 2008. IWC document SC/61/SH23.
IWC. 2007. Report of the International Whaling Commission, Annex H, Report of the Sub-Committee on Southern Hemisphere whale stocks. Annex H. J.Cetacean Res.Manage. (Suppl.) 8.

IWC. 2009. Report of the International Whaling Commission, Annex H, Report of the Sub-Committee on Southern Hemisphere whale stocks. J.Cetacean Res.Manage. (Suppl.) 10.
Johnston, S.J. and Butterworth, D.S. 2009. Bayesian assessments using models which allow for interchange on the breeding grounds of Southern Hemisphere humpback whale breeding sub stocks C1 and C3. IWC document SC/61/SH27.
Matsuoka, K., Hakamada, T., Kiwada, H., Murase, H. and Nishiwaki, S. (in press). Abundance estimates and trends for humpback whales (Megaptera novaeangliae) in Antarctic Areas IV and V based on JARPA sighting data. J. Cetacean Res. Manage. (Special Issue).

Noad, M.J., Paton, D.A. and Cato, D.H. 2006. Absolute and relative abundance estimates of Australian east coast humpback whales (Megaptera novaeangliae). Paper SC/A06/HW27 submitted to the International Whaling Commission southern hemisphere humpback workshop, Hobart, 4-7 April (unpublished).

Noad, M.J., Dunlop, R.A., Paton, D. and Cato, D.H. 2008. An update of the east Australian humpback whale population (E1) rate of increase. IWC document SC/60/SH31.
Olavarria, C., Anderson, M., Paton, D., Burns, D., Brasseur, M., Garrigue, C., Hauser, N., Poole, M., Caballero, S., Florez-Gonzales, L. and Backer, C.S. 2006. Eastern Australia humpback whale genetic diversity and their relationship with Breeding Stocks D, E, F and G. IWC document SC/58/SH25.

Rosenbaum, H.C., Pomilla, C., Olavarria, C., Baker, C.S., Leslie, M. C., Mendez, M. C., Caballero, S., Brassuer, M., Bannister, J., Best, P.B., Bonatto, S., Collins, T., Engel, M.H., Ersts, P.J., Findlay, K.P., Florez-Gonzalez, L., Garrigue, C., Hauser, N., Jenner, C., ,Meyer, M., Minton, G., Poole, M., Razafindrakoto, Y. 2006. A first and preliminary analysis of MTDNA sequences from humpback whales for breeding stocks A-G and X. Paper SC/A06/HW59 submitted to the IWC southern hemisphere humpback workshop, Hobart, April 2006.

Rubin, D.B. 1988. Using the SIR algorithm to simulate posterior distributions. Pp. 395-402. In. J.M. Bernado, M.H. DeGroot, D.V. Lindlley and A.F.M Smith (eds). Bayesian Statistics 3: Proceedings of the Third Valencia International Meeting. June 1-5, 1987. Clarendon Press, Oxford. 805pp.

Walters, C. and Ludwig, D. 1994. Calculation of Bayes posterior probability distributions for key population parameters. Can. J. Fish. Aquat. Sci. 51: 713-722.

Zerbini, A.N. 2004 Status of the Southern Hemisphere humpback whale breeding stock A: preliminary results from a Bayesian assessment. IWC document SC/56/SH17.

Zerbini, A. N., Ward, E. J., Kinas, P. G., Engel, M. H. and Andriolo, A. (in press) A Bayesian assessment of the conservation status of humpback whales (Megaptera novaeangliae) in the western South Atlantic Ocean. J. Cetacean Res. Manage. (Special Issue).

Table 1: Historic catch series for all stocks for the breeding areas, north of $40^{\circ} \mathrm{S}$ (Allison, pers. commn).

| Year | A | B | C1 | C3 | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1900 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| 1901 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| 1902 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| 1903 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| 1904 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| 1905 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| 1906 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| 1907 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
| 1908 | 0 | 0 | 104 | 0 | 0 | 8 | 0 | 16 |
| 1909 | 0 | 576 | 149 | 0 | 0 | 16 | 0 | 44 |
| 1910 | 0 | 962 | 632 | 0 | 0 | 77 | 0 | 62 |
| 1911 | 102 | 2603 | 1580 | 0 | 0 | 77 | 0 | 92 |
| 1912 | 342 | 4692 | 2313 | 25 | 234 | 224 | 0 | 86 |
| 1913 | 352 | 5962 | 1805 | 0 | 993 | 440 | 0 | 45 |
| 1914 | 317 | 2873 | 830 | 0 | 1968 | 93 | 0 | 195 |
| 1915 | 82 | 169 | 334 | 0 | 1297 | 106 | 0 | 30 |
| 1916 | 68 | 70 | 94 | 0 | 388 | 82 | 0 | 15 |
| 1917 | 62 | 10 | 7 | 0 | 0 | 94 | 0 | 15 |
| 1918 | 62 | 10 | 9 | 0 | 0 | 90 | 0 | 23 |
| 1919 | 29 | 17 | 91 | 0 | 0 | 119 | 0 | 24 |
| 1920 | 0 | 40 | 148 | 0 | 0 | 107 | 0 | 21 |
| 1921 | 0 | 0 | 251 | 0 | 0 | 89 | 0 | 21 |
| 1922 | 0 | 626 | 285 | 0 | 155 | 57 | 0 | 19 |
| 1923 | 0 | 899 | 183 | 0 | 166 | 79 | 0 | 16 |
| 1924 | 0 | 662 | 187 | 0 | 0 | 107 | 0 | 34 |
| 1925 | 0 | 842 | 372 | 0 | 669 | 96 | 0 | 248 |
| 1926 | 0 | 442 | 124 | 0 | 735 | 78 | 0 | 277 |
| 1927 | 0 | 47 | 86 | 0 | 996 | 127 | 0 | 40 |
| 1928 | 0 | 68 | 62 | 0 | 1035 | 105 | 0 | 36 |
| 1929 | 0 | 50 | 99 | 0 | 0 | 102 | 0 | 26 |
| 1930 | 0 | 614 | 134 | 0 | 0 | 78 | 0 | 33 |
| 1931 | 0 | 0 | 72 | 0 | 0 | 109 | 0 | 53 |
| 1932 | 0 | 0 | 307 | 0 | 0 | 18 | 0 | 21 |
| 1933 | 0 | 0 | 162 | 0 | 0 | 44 | 0 | 11 |
| 1934 | 0 | 723 | 514 | 0 | 0 | 52 | 0 | 13 |
| 1935 | 0 | 1238 | 418 | 0 | 0 | 57 | 0 | 31 |
| 1936 | 0 | 869 | 300 | 0 | 3076 | 69 | 0 | 18 |
| 1937 | 0 | 327 | 242 | 1223 | 3250 | 55 | 0 | 28 |
| 1938 | 0 | 0 | 177 | 1752 | 917 | 75 | 0 | 6 |
| 1939 | 0 | 0 | 200 | 1240 | 0 | 80 | 0 | 7 |
| 1940 | 0 | 0 | 176 | 0 | 0 | 107 | 0 | 0 |
| 1941 | 0 | 0 | 79 | 0 | 0 | 86 | 0 | 0 |
| 1942 | 0 | 0 | 156 | 0 | 0 | 71 | 0 | 0 |
| 1943 | 0 | 0 | 80 | 0 | 0 | 90 | 0 | 0 |
| 1944 | 0 | 0 | 115 | 0 | 0 | 88 | 0 | 0 |
| 1945 | 0 | 0 | 116 | 0 | 0 | 107 | 0 | 0 |
| 1946 | 0 | 0 | 93 | 0 | 0 | 110 | 0 | 15 |
| 1947 | 11 | 5 | 89 | 0 | 2 | 101 | 0 | 19 |
| 1948 | 23 | 14 | 182 | 0 | 4 | 92 | 0 | 5 |
| 1949 | 17 | 1371 | 190 | 1333 | 190 | 144 | 0 | 6 |
| 1950 | 26 | 1411 | 151 | 714 | 388 | 79 | 0 | 5 |



Table 2: Historic catch series for all stocks for the feeding areas, south of $40^{\circ} \mathrm{S}$ (Allison, pers. commn). The columns with grey shading are those corresponding to catches taken in the nucleus regions; the columns in white show the catches taken in marginal regions.

| Year | A | A/B | B | B/C | C | C/D | D | D/E | E | E/F | F | F/G | G | G/A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1900 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1901 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1902 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1903 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 1904 | 180 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1905 | 288 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | 0 |
| 1906 | 240 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 498 | 0 |
| 1907 | 1261 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 366 | 0 |
| 1908 | 1849 | 0 | 0 | 0 | 0 | 217 | 0 | 0 | 0 | 0 | 0 | 0 | 1246 | 9 |
| 1909 | 3391 | 0 | 0 | 0 | 0 | 118 | 0 | 0 | 0 | 0 | 0 | 0 | 1481 | 94 |
| 1910 | 6468 | 0 | 0 | 0 | 0 | 83 | 0 | 0 | 0 | 0 | 0 | 0 | 2527 | 70 |
| 1911 | 5730 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2039 | 17 |
| 1912 | 2539 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 976 | 8 |
| 1913 | 647 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1038 | 7 |
| 1914 | 838 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 656 | 12 |
| 1915 | 1615 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 219 | 0 |
| 1916 | 379 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21 | 0 |
| 1917 | 59 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 69 | 0 |
| 1918 | 67 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 81 | 0 |
| 1919 | 82 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 181 | 0 |
| 1920 | 102 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 149 | 0 |
| 1921 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1922 | 364 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 189 | 0 |
| 1923 | 133 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 96 | 0 |
| 1924 | 266 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 102 | 0 |
| 1925 | 254 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 163 | 0 |
| 1926 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 82 | 0 | 0 | 0 | 0 |
| 1927 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 | 2 |
| 1928 | 18 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 17 | 0 | 0 | 0 | 0 |
| 1929 | 50 | 9 | 8 | 4 | 0 | 11 | 0 | 0 | 0 | 775 | 0 | 0 | 0 | 0 |
| 1930 | 107 | 26 | 37 | 111 | 38 | 4 | 23 | 1 | 81 | 58 | 96 | 0 | 0 | 0 |
| 1931 | 18 | 1 | 2 | 0 | 2 | 109 | 52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1932 | 23 | 2 | 16 | 9 | 28 | 3 | 79 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1933 | 132 | 38 | 47 | 9 | 45 | 101 | 500 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1934 | 57 | 14 | 24 | 265 | 277 | 92 | 1252 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1935 | 48 | 201 | 99 | 1518 | 351 | 1 | 940 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 1936 | 105 | 88 | 162 | 2390 | 293 | 15 | 1420 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 1937 | 242 | 65 | 123 | 498 | 281 | 57 | 650 | 161 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1938 | 0 | 0 | 0 | 0 | 0 | 0 | 655 | 204 | 24 | 0 | 0 | 0 | 0 | 0 |
| 1939 | 2 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1940 | 36 | 111 | 131 | 0 | 0 | 0 | 0 | 342 | 1026 | 684 | 342 | 0 | 1 | 0 |
| 1941 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1942 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1943 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1944 | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1945 | 238 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1946 | 30 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1947 | 24 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1948 | 25.3 | 38.1 | 45.4 | 33.2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1949 | 66 | 257.5 | 207.8 | 350.7 | 44 | 0 | 665 | 119 | 908 | 0 | 0 | 0 | 0 | 0 |
| 1950 | 672.6 | 27.9 | 201 | 69.9 | 3 | 5 | 1110 | 0 | 0 | 85 | 403 | 0 | 271.8 | 0 |
| 1951 | 17.6 | 114.9 | 313 | 209.6 | 1 | 104 | 626 | 402 | 1 | 169 | 227 | 0 | 0 | 0 |


| 1952 | 24.6 | 33.4 | 168.1 | 193.9 | 14 | 3 | 190 | 0 | 0 | 382 | 148 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1953 | 132.2 | 31.2 | 69.8 | 51.7 | 14 | 0 | 259 | 0 | 0 | 0 | 150 | 0 | 0 | 0 |
| 1954 | 25.1 | 52.1 | 265.4 | 42.3 | 7 | 0 | 26 | 0 | 751 | 22 | 507 | 0 | 0 | 0 |
| 1955 | 87.3 | 83.2 | 60.2 | 22.4 | 6 | 111 | 546 | 919 | 1962 | 0 | 334 | 0 | 14 | 0 |
| 1956 | 150.2 | 65.2 | 30.5 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 10 | 66 | 626.2 | 2.8 |
| 1957 | 57.5 | 32.4 | 28 | 55.3 | 11 | 70.3 | 1828 | 12 | 87 | 133 | 167 | 31 | 59 | 0 |
| 1958 | 10.9 | 6.5 | 80.6 | 55.3 | 63.6 | 297.3 | 2106 | 2158 | 447.5 | 735.2 | 0 | 0 | 0 | 52.4 |
| 1959 | 7.7 | 7.7 | 53 | 130 | 21.8 | 11.6 | 205.7 | 85.8 | 8774 | 3227 | 757 | 81.1 | 19 | 0 |
| 1960 | 14.2 | 4 | 113.2 | 27 | 44.2 | 51.6 | 427.3 | 242.3 | 2090 | 6334 | 3498 | 0 | 81 | 5.8 |
| 1961 | 0 | 0 | 18 | 25 | 3 | 2 | 241 | 134 | 511 | 923 | 2401 | 98 | 1166 | 1 |
| 1962 | 12.6 | 4 | 10 | 19 | 55 | 120 | 1474 | 176.4 | 93.3 | 311.4 | 294.9 | 42.5 | 255.1 | 49.4 |
| 1963 | 0 | 0 | 2 | 0 | 38.8 | 79.2 | 256.2 | 23.7 | 45.7 | 238 | 0 | 0 | 0 | 0 |
| 1964 | 0 | 0 | 0 | 0 | 48 | 16 | 55.8 | 17.9 | 40.3 | 45 | 0 | 0 | 0 | 0 |
| 1965 | 52 | 34 | 880 | 64 | 11 | 6.5 | 76.4 | 17.6 | 82.8 | 177.1 | 562.2 | 0 | 0 | 0 |
| 1966 | 0 | 0 | 147 | 137 | 59 | 6 | 90 | 33 | 8 | 25 | 253 | 0 | 0 | 0 |
| 1967 | 0 | 6 | 359 | 35 | 31 | 11 | 66 | 12 | 12 | 14 | 111 | 0 | 0 | 0 |
| 1968 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1969 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1970 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1971 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| 1972 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
| $\begin{aligned} & 1973- \\ & 2009 \end{aligned}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table 3a: Assessment results for breeding stocks A to C3

|  | BS A |  | BS B | BS C1 |
| :--- | :---: | :---: | :---: | :---: |

Table 3b: Assessment results for breeding stocks D to G

|  | BS D | BS E | BS F | BS G |
| :--- | :---: | :---: | :---: | :---: |
| Recent <br> abundance | $\mathbf{2 1 7 5 0}(\mathbf{2 0 0 8})$ | $\mathbf{7 0 9 0}(\mathbf{2 0 0 4})$ | $\mathbf{3 8 2 7}(\mathbf{2 0 0 2 )}$ | $\mathbf{6 5 0 4}(\mathbf{2 0 0 6})$ |
| Trend | - IWC 1996 estimates | - Estimates from Noad $\boldsymbol{e t} \boldsymbol{a l}$. | - IDCR/SOWER estimates | - IDCR/SOWER estimates |
| information | - JARPA estimates | - JARPA estimates |  |  |
|  | - IDCR/SOWER estimates | - IDCR/SOWER estimates |  |  |
| $r$ | $0.100[0.095 ; 0.106]$ | $0.106[0.106 ; 0.106]$ | $0.064[0.039 ; 0.095]$ | $0.069[0.054 ; 0.098]$ |
| $K$ | $19644[18984 ; 20227]$ | $27187[26897 ; 27441]$ | $15362[14113 ; 17037]$ | $11351[10501 ; 11948]$ |
| $N_{\text {min }}$ | $885[452 ; 1713]$ | $129[119 ; 139]$ | $498[198 ; 1087]$ | $627[369 ; 960]$ |
| $N_{2010}$ | $18918[16813 ; 19927]$ | $8614[799 ; 9275]$ | $6167[4682 ; 7976]$ | $9161[6355 ; 10970]$ |
| $N_{\text {min }} / K$ | $0.045[0.023 ; 0.087]$ | $0.005[0.004 ; 0.005]$ | $0.032[0.014 ; 0.064]$ | $0.055[0.033 ; 0.081]$ |
| $N_{2010} / K$ | $0.971[0.863 ; 0.997]$ | $0.317[0.294 ; 0.341]$ | $0.400[0.283 ; 0.554]$ | $0.802[0.547 ; 0.998]$ |
| $N_{2040} / K$ | $1.000[1.000 ; 1.000]$ | $0.998[0.998 ; 0.999]$ | $0.972[0.735 ; 0.999]$ | $0.999[0.984 ; 1.000]$ |

Figure 1: Southern Hemisphere humpback whale catch allocation reference case showing Nucleus and Margin Areas in the feeding grounds associated with breeding stocks A-G (IWC 2009).


Figure 2a: Population trajectories for breeding stocks A to C3. The posterior medians and $90 \%$ probability interval envelopes are shown. Results for years to the right of the vertical dashed line are projections under zero future catch.





Figure 2b: Population trajectories for breeding stocks D to G. The posterior medians and $90 \%$ probability interval envelopes are shown. Results for years to the right of the vertical dashed line are projections under zero future catch.





## APPENDIX 1 - Model dynamics and Likelihood function

## Breeding stock population dynamics

$$
\begin{equation*}
N_{y+1}^{i}=N_{y}^{i}+r^{i} N_{y}^{i}\left(1-\left(\frac{N_{y}^{i}}{K^{i}}\right)^{\mu}\right)-C_{y}^{i} \quad i \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C} 1, \mathrm{C} 3, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}\} \tag{A1.1}
\end{equation*}
$$

where
$N_{y}^{i} \quad$ is the number of whales in the breeding population $i$ at the start of year $y$,
$r^{i} \quad$ is the intrinsic growth rate for breeding population $i$ (the maximum per capita the population can achieve when its size is very low),
$K^{i} \quad$ is the carrying capacity for population $i$,
$\mu \quad$ is the "degree of compensation" parameter; this is set at 2.39 , which fixes the MSY level to MSYL $=0.6 K$, as conventionally assumed by the IWC Scientific Committee, and
$C_{y}^{i} \quad$ is the total catch (in terms of animals) for breeding population $i$ in year $y$.

C 1 and C 3 are sub-stocks of breeding stock C, which is assumed to follow the sabbatical model (Johnston et al. 2009). Every year there is a probability $\alpha^{C 1}$ that an animal from sub-stock C 1 travels to the C 3 region instead of C 1 and similarly a probability $\alpha^{C 3}$ that an animal from sub-stock C3 travels to the C1 region instead of C3. The observed numbers in regions C 1 and C 3 each year are then given by $\eta^{C 1}$ and $\eta^{C 3}$ respectively, and these are the variables to which observations apply (both capture-recapture and survey data). The observed populations are given by:

$$
\eta_{y}^{i}=\left(1-\alpha^{i}\right) N_{y}^{i}+\alpha^{j} N_{y}^{j} \quad\left\{\begin{array}{c}
i  \tag{A1.2}\\
j
\end{array}\right\}=\left\{\begin{array}{l}
C 1 \\
C 3
\end{array}\right\} \text { or }\left\{\begin{array}{l}
C 3 \\
C 1
\end{array}\right\}
$$

Note that for simplicity reasons, this assessment uses $\alpha^{C 1}=0.01$ and $\alpha^{C 3}=0.05$. Future assessments will allow these values to be estimated.

## Catch Allocation

Catches north of $40^{\circ} \mathrm{S}$ are available by area and thus easily allocated to the respective breeding stocks (see Table 1). The feeding ground regions south of $40^{\circ} \mathrm{S}$ are split into nucleus and margin regions (see Figure 1). Catches taken in any of the nucleus regions are allocated to the corresponding breeding stock. Catches taken in a marginal region are allocated to the neighbouring stocks in proportion to the population abundances. For example, if 1,2 and 3 are three neighbouring populations, the feeding ground catch allocated to population 2 is given by:

$$
\begin{equation*}
C_{y}^{\text {feed,2 }}=C_{y}^{\text {nucleus,2 }}+C_{y}^{\text {marg in,12 }} \frac{N_{y}^{2}}{N_{y}^{1}+N_{y}^{2}}+C_{y}^{\text {marg in,23 }} \frac{N_{y}^{2}}{N_{y}^{2}+N_{y}^{3}} \tag{A1.3}
\end{equation*}
$$

where

$$
C_{y}^{f e e d, 2} \quad \text { is the total feeding ground catch in year } y \text { from breeding population } 2
$$

$$
\begin{array}{ll}
C_{y}^{\text {nucleus,2 }} & \text { is the catch in year } y \text { taken from the nucleus region associated with breeding stock } 2, \\
C_{y}^{\text {margin,12 }} & \text { is the catch year } y \text { taken from the marginal area shared between stocks } 1 \text { and } 2, \text { and } \\
C_{y}^{\text {marg in,23 }} & \text { is the catch year } y \text { taken from the marginal area shared between stocks } 2 \text { and } 3 .
\end{array}
$$

The total catch for breeding stock $i$ is given by:

$$
\begin{equation*}
C_{y}^{i}=C_{y}^{\text {breed }, i}+C_{y}^{\text {feed }, i} \quad i \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}\} \tag{A1.4}
\end{equation*}
$$

Note that (A1.4) applies for the combined breeding stock C . The feeding ground catches for stock C are further split in proportion to the respective C 1 and C 3 population sizes. The breeding ground catches, which are given for regions C 1 and C 3 , need to be adjusted to take into account the movement within the stocks. The C1 and C3 catches are thus given by:

$$
C_{y}^{C i}=C_{y}^{\text {breed }, C i}+C_{y}^{\text {feed }, C} \frac{N_{y}^{C i}}{N_{y}^{C 1}+N_{y}^{C 3},}, \quad\left\{\begin{array}{l}
i  \tag{A1.5}\\
j
\end{array}\right\}=\left\{\begin{array}{l}
C 1 \\
C 3
\end{array}\right\} \text { or }\left\{\begin{array}{l}
C 3 \\
C 1
\end{array}\right\}
$$

where

$$
C_{y}^{b r e e d, C i}=C_{y}^{C i, \text { reported }} \frac{\left(1-\alpha^{C i}\right) N_{y}^{C i}}{\left(1-\alpha^{C i}\right) N_{y}^{C i}+\alpha^{C i} N_{y}^{C j}}+C_{y}^{C j, \text { reported }} \frac{\alpha^{C i} N_{y}^{C i}}{\left(x^{C i} N_{y}^{C i}+\left(1-\alpha^{C j}\right) N_{y}^{C j}\right.}
$$

and $C_{y}^{C i, \text { reported }}$ is breeding ground catch allocated to sub-stock Ci.

## Likelihood Function

Given a combination of $r^{i}$ and $K^{i}$ values, the abundance and trend data are used to assign a likelihood component corresponding to that particular stock. The components of the negative log likelihood are calculated as follows:

## Absolute abundance estimates

Each breeding population has an absolute abundance estimate, $\boldsymbol{N}_{\text {target }}^{i, o b s}$, with an associated CV (see Appendix 2). Given this estimate, the contribution to the negative of the log-likelihood is:

$$
\begin{equation*}
-\ln L=\frac{1}{2 C V^{2}}\left(N_{t a r g e t}^{i, o b s}-\ln N_{t a r g e t}^{i}\right. \tag{A1.6}
\end{equation*}
$$

where $N_{t a r g e t}^{i}$ is the model-estimated abundance for the target year for population $i$.

## Relative abundance indices

Appendix 2 gives the series of indices that are available for the respective breeding populations. Given one such series, it is assumed that the observed relative abundance index is log-normally distributed about its expected value:

$$
\begin{equation*}
I_{y}^{i}=q^{i} N_{y}^{i} e^{\varepsilon_{y}} \tag{A1.7}
\end{equation*}
$$

$I_{y}^{i} \quad$ is the relative abundance for year $y$ for breeding sub-stock $i$,
$q^{i} \quad$ is the catchability coefficient/constant of proportionality for the particular index in question,
$N_{y}^{i} \quad$ is the model estimate of observed population size at the start of year $y$ for breeding stock $i$, and

The $\sigma^{i}$ parameter is the residual standard deviation which is estimated in the fitting procedure by its maximum likelihood value:

$$
\begin{equation*}
\hat{\sigma}^{i}=\sqrt{1 / \bar{n}^{i} \sum_{y}\left(1 l_{y}^{i}-\ln q^{i}-\ln N^{i}{ }^{2}\right.} \tag{A1.8}
\end{equation*}
$$

where
$\bar{n}^{i}$ is the number of data points in the particular series in question, and
$q^{i}$ is the multiplicative bias, estimated by its maximum likelihood value:

$$
\begin{equation*}
\ln \hat{q}^{i}=1 / \bar{n}^{i} \sum_{y}\left(\hat{l} I_{y}^{i}-\ln N_{y}^{i}\right. \tag{A1.9}
\end{equation*}
$$

The final contribution to the negative of the log-likelihood is given by:

$$
\begin{equation*}
-\ln L=\bar{n}^{i} \ln \sigma^{i}+\frac{1}{2\left(\sigma^{i}\right)^{2}} \sum_{y}\left(I_{y}^{i}-\ln q^{i}-\ln N_{y}^{i}\right. \tag{A1.10}
\end{equation*}
$$

## Capture-recapture data

Capture-recapture information is available for breeding stocks B and C. These are incorporated into the likelihood as follows:

Captures:

$$
\begin{equation*}
n_{y}^{i}=p_{y}^{i} N_{y}^{i} \quad i=\mathrm{B}, \mathrm{C} 1, \mathrm{C} 3 \tag{A1.11}
\end{equation*}
$$

Recaptures:

$$
m_{y, y^{\prime}}^{i, j}
$$

where: $\quad n_{y}^{i} \quad$ is the number of animals captured in breeding region $i$ in year $y$,
$m_{y, y^{\prime}}^{i, j} \quad$ is the number of animals captured in $i$ in year $y$ that were
recaptured in $j$ in year $y^{\prime}$,
$p_{y}^{i} \quad$ is the probability that an animal is captured in $i$ year $y$.

Inter-region recaptures apply only to breeding stock $C$, which has two sub-stocks. Since B is treated as a single stock, $i=j=B$ and $m_{y, y^{\prime}}^{B, B}$ is estimated by:

$$
\begin{equation*}
\hat{m}_{y, y^{\prime}}^{B}=p_{y}^{B} p_{y^{\prime}}^{B} N_{y}^{B} e^{-M\left(y^{\prime}-y\right)} \tag{A1.12}
\end{equation*}
$$

where:

$$
\begin{array}{ll}
\hat{m}_{y, y^{\prime}}^{B} & \text { is the model-predicted number of animals in B captured in year } y \text { that were } \\
& \text { recaptured in year } y^{\prime}, \text { and } \\
M & \text { is the natural mortality rate (set here to equal } 0.03 \text { ). }
\end{array}
$$

For breeding stock C , there are data for within-region recaptures, and the model predicted number of animals in $i$ captured in year $y$ that were recaptured in $j$ in year $y^{\prime}$ is given by:

$$
\begin{align*}
& \hat{m}_{y, y^{\prime}}^{i, j}=p_{y}^{i}\left[\left(1-\alpha^{i}\right) N_{y}^{i} e^{-M\left(y^{\prime}-y\right)} \alpha^{i}+\alpha^{j} N_{y}^{j} e^{-M\left(y^{\prime}-y\right)}\left(1-\alpha^{j}\right)\right] p_{y^{\prime}}^{j}  \tag{A1.13}\\
& \hat{m}_{y, y^{\prime}}^{i, i}=p_{y}^{i}\left[\left(1-\alpha^{i}\right) N_{y}^{i} e^{-M\left(y^{\prime}-y\right)}\left(1-\alpha^{i}\right)+\alpha^{j} N_{y}^{j} e^{-M\left(y^{\prime}-y\right)} \alpha^{j}\right] p_{y^{\prime}}^{i} \tag{A1.14}
\end{align*}
$$

where:

$$
\left\{\begin{array}{l}
i \\
j
\end{array}\right\}=\left\{\begin{array}{l}
C 1 \\
C 3
\end{array}\right\} \text { or }\left\{\begin{array}{l}
C 3 \\
C 1
\end{array}\right\} ;\left\{\begin{array}{l}
i \\
i
\end{array}\right\}=\left\{\begin{array}{l}
C 1 \\
C 1
\end{array}\right\} \text { or }\left\{\begin{array}{l}
C 3 \\
C 3
\end{array}\right\}
$$

The contribution of the capture-recapture data to the negative of the log-likelihood function is then given by:

$$
\begin{equation*}
-\ln L=\sum_{i} \sum_{j} \sum_{y=y_{o}}^{y_{f}-1} \sum_{y^{\prime}=y+1}^{y_{f}}\left[-m_{y, y^{\prime}}^{i, j} \ln \hat{m}_{y, y^{\prime}}^{i, j}+\hat{m}_{y, y^{\prime}}^{i, j}\right] \tag{A1.15}
\end{equation*}
$$

## Prior on variation of $r$ amongst breeding stocks:

The last term in the likelihood is introduced to favour solutions for which the variance amongst the eight $r$ values is not too high:

$$
\begin{equation*}
-\ln L=\sum_{i=A}^{G} \frac{\left(r^{i}-\bar{r}\right)^{2}}{2 \sigma^{2}} \tag{A1.16}
\end{equation*}
$$

where
$\bar{r} \quad$ is the mean of the $r^{i}$ values, and
$\sigma \quad$ is a variance term, taken to be 0.02 in this assessment.
Thus each $r^{i}$ value is assumed to be normally distributed about some mean, with a standard deviation of 0.02.

## APPENDIX 2 - Abundance and trend data

The data used in this assessment for the respective breeding populations are reported here.
There are three basic forms of abundance and trend data.

1. Absolute abundance estimates
2. Relative abundance estimates
3. Capture-recapture data

The minimum number of haplotypes for each population is also given. These numbers are used as an indication of what the minimum size of the populations may have been, and (when multiplied by 4 ) could be incorporated into the model as lower bounds.

## Breeding Stock A

## Absolute abundance estimate

From Andriolo et al. (2006).
Estimate from a fixed-wing aircraft survey off Brazil

| Year | N | CV |
| :--- | :--- | :--- |
| 2005 | 6251 | 0.17 |

## Relative abundance estimates

## Breeding ground index of abundance:

From Andriolo et al. (2006).
These are from line transect surveys using ship and aerial surveys. Ship surveys were conducted off the northeastern coast of Brazil ( $5-12^{\circ} \mathrm{S}$ ) (Zerbini et al., 2004) and aerial surveys were conducted from 2001-2005. Estimates of abundance from the aerial surveys conducted from 2002-2004 were obtained using comparable methodology (Andriolo et al., 2006), but covered only a portion of the range of the stock (12-21 ${ }^{\circ}$ S). Therefore these estimates are used as an index of relative abundance (Zerbini et al., in press).

| Year | N | CV |
| :--- | :--- | :--- |
| 2002 | 2305 | 0.2 |
| 2003 | 2539 | 0.19 |
| 2004 | 3615 | 0.19 |

Feeding ground index of abundance:
From Branch (in press).
IDCR/SOWER estimates

| Year | Mid year | N | CV |
| :--- | :--- | :--- | :--- |
| $1981 / 82$ | $81 / 82$ | 45 | 0.88 |
| $1986 / 87$ | $86 / 87$ | 259 | 0.62 |
| $1996-1998$ | $97 / 98$ | 200 | 0.64 |

## Minimum number of haplotypes

62 (Rosenbaum et al., 2006)

## Breeding Stock B

## Absolute abundance estimate

From Collins et al. (2008).
The estimates given below are for the year 2003 and result from the MARK program estimates when fitted to the photo-ID capture-recapture data from Iguela only (lower estimate of 6342 in 2003) and the genetic data from Iguela only (upper estimate of 7196 in 2003).

| lower | 6432 | CV | 0.18 |
| :--- | :--- | :--- | :--- |
| upper | 7196 | CV | 0.15 |

## Relative abundance estimates

From Branch (in press)
IDCR/SOWER estimates for the breeding grounds over $20^{\circ} \mathrm{W}-10^{\circ} \mathrm{E}$ for breeding stock B .

| Year | Mid year | N | CV |
| :--- | :--- | :--- | :--- |
| 1980 | $80 / 81$ | 692 | 0.84 |
| 1986 | $86 / 87$ | 70 | 0.63 |
| 1995 | $95 / 96$ | 595 | 0.51 |

## Mark-recapture

From Collins et al. (2008)
Photographs and biopsies were collected from the coastal waters of Gabon during the austral winter (July-October) in each year between 2001 and 2006. Data analysed were from two field sites: Iguela ( $1^{\circ} 51^{\prime} \mathrm{S}, 9^{\circ} 20^{\prime} \mathrm{E}$ ) and Mayumba $\left(3^{\circ} 22^{\prime} \mathrm{S}, 10^{\circ} 38^{\prime} \mathrm{E}\right.$ ).

Photo-ID (total sample from all sites)

| $\mathbf{N}$ | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 24 | 111 | 233 | 161 | 138 | 216 | 199 |


| $\mathbf{M}$ | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2000 | X | 0 | 1 | 0 | 0 | 0 | 0 |
| 2001 |  | X | 5 | 6 | 5 | 2 | 1 |
| 2002 |  |  | X | 12 | 2 | 2 | 4 |
| 2003 |  |  |  | X | 7 | 2 | 1 |
| 2004 |  |  |  |  | X | 2 | 2 |
| 2005 |  |  |  |  |  | X | 6 |
| 2006 |  |  |  |  |  |  | X |

Photo-ID (Iguela only)

| $\mathbf{N}$ |  | 2001 | 2002 | 2003 | 2004 | 2005 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 111 | 143 | 161 | 138 | 123 |


| $\mathbf{M}$ |  | 2001 | 2002 | 2003 | 2004 | 2005 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2001 |  | X | 4 | 6 | 5 | 1 |
| 2002 |  |  | X | 6 | 6 | 1 |
| 2003 |  |  |  | X | 7 | 1 |
| 2004 |  |  |  |  | X | 0 |
| 2005 |  |  |  |  |  | X |

Genotypes (total samples from all sites) (secondary data)

| $\mathbf{N}$ | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 82 | 155 | 257 | 270 | 188 | 296 | 207 |


| $\mathbf{M}$ | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2000 | X | 1 | 1 | 4 | 2 | 3 | 0 |
| 2001 |  | X | 6 | 8 | 6 | 3 | 2 |
| 2002 |  |  | X | 6 | 6 | 6 | 4 |
| 2003 |  |  | X | 8 | 7 | 1 |  |
| 2004 |  |  |  | X | 3 | 3 |  |
| 2005 |  |  |  |  | X | 11 |  |
| 2006 |  |  |  |  |  | X |  |

Genotypes (Iguela only) (secondary data)

| $\mathbf{N}$ |  | 2001 | 2002 | 2003 | 2004 | 2005 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 155 | 170 | 270 | 188 | 137 |


| $\mathbf{M}$ |  | 2001 | 2002 | 2003 | 2004 | 2005 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2001 |  | X | 6 | 8 | 6 | 0 |
| 2002 |  |  | X | 4 | 2 | 6 |
| 2003 |  |  |  | X | 8 | 4 |
| 2004 |  |  |  |  | X | 6 |
| 2005 |  |  |  |  |  | X |

Note: In line with the methods of analysis used, these Tables are structured such that if a whale is recaptured twice, say, the second recapture is linked only to the first recapture treated as a new capture.

Note that in this assessment only the photographic capture-recapture information for all regions combined was used.

Minimum number of haplotypes (Rosenbaum et al., 2006)
Total: 147
Gabon (B1): 92
Angola \& West South Africa: 55

## Breeding Stock C

## Absolute abundance estimate

C1 estimate provided by Findlay et al. (in press)
C3 estimates obtained using the MARK program applied to capture-recapture data from both photo-ID and genotypic data (lower est 6737, $\mathrm{CV}=0.31$, upper est $7715, \mathrm{CV}=0.24$ ) (Cerchio et al., 2008a)

|  | Year | Estimate | CV |
| :--- | :--- | :--- | :--- |
| C1 | 2003 | 5965 | 0.17 |
| C3 | 2005 | 7715 | 0.24 |

## Relative abundance estimates

Cape Vidal sightings per unit effort data for the 1988-2002 period (Findlay and Best, 2006). These are obtained form shore-based surveys of northwards-migrating humpback whales at Cape Vidal, north KZN.

| Year | Estimate |
| :--- | :--- |
| 1988 | 358 |
| 1989 | 249 |
| 1990 | 359 |
| 1991 | 587 |
| 2002 | 1673 |

IDCR/SOWER estimates for the breeding grounds $\left(10^{\circ} \mathrm{E}-60^{\circ} \mathrm{E}\right)$. (Branch, in press)

| Year | Mid year | N | CV |
| :--- | :--- | :--- | :--- |
| 1979 | $79 / 80$ | 1043 | 0.62 |
| 1987 | $87 / 88$ | 926 | 0.57 |
| 1993 | $93 / 94$ | 2391 | 0.41 |

## Mark-recapture

Reported in Cerchio et al. (2008a and b) except for the addition of C1 data for 2007 provided by Findlay (pers. commn). These consist of photo-ID mark-recapture data from Antongil Bay (C3) (Cerchio et al., 2008a), as well as photo-ID mark-recapture data for C1 (Cerchio et al., 2008b). The years 2000 and 2004 for C 1 and the year 2002 for C3 are excluded in the assessment due to poor temporal coverage of capture effort.

Seen in C1 and re-seen in C1

| $\mathbf{n}$ | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 3 | 24 | 49 | 115 | 21 | 134 | 112 | 167 |


| $\mathbf{m}$ | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2000 | X | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2001 |  | X | 1 | 0 | 0 | 0 | 0 | 0 |
| 2002 |  |  | X | 1 | 1 | 0 | 0 | 1 |
| 2003 |  |  |  | X | 0 | 0 | 0 | 1 |
| 2004 |  |  |  |  | X | 1 | 0 | 0 |
| 2005 |  |  |  |  |  | X | 2 | 3 |
| 2006 |  |  |  |  |  |  | X | 1 |

Seen in C3 and re-seen in C3

| $\mathbf{n}$ | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 89 | 159 | 16 | 126 | 151 | 144 | 158 |


| $\mathbf{m}$ | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2000 | X | 2 | 1 | 3 | 1 | 0 | 1 |
| 2001 |  | X | 1 | 3 | 3 | 3 | 2 |
| 2002 |  |  | X | 3 | 0 | 0 | 0 |
| 2003 |  |  |  | X | 2 | 1 | 3 |
| 2004 |  |  |  |  | X | 4 | 3 |
| 2005 |  |  |  |  |  | X | 4 |

Between C 1 and C3

| $\mathbf{n}$ | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C1 | 89 | 159 | 16 | 126 | 151 | 144 | 158 |
| C3 | 3 | 24 | 49 | 115 | 21 | 134 | 112 |


| $\mathbf{m}$ | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2000 | X | 0 | 0 | 0 | 0 | 0 | 0 |
| 2001 |  | X | 0 | 0 | 0 | 0 | 0 |
| 2002 |  |  | X | 0 | 0 | 0 | 0 |
| 2003 |  |  |  | X | 0 | 0 | 0 |
| 2004 |  |  |  |  | X | 0 | 0 |
| 2005 |  |  |  |  |  | X | 0 |
| 2006 |  |  |  |  |  |  | X |

Minimum number of haplotypes (Rosenbaum et al. ,2006)
Total: 188
C1: 62
C2: 38
C3: 88
Updated C2\&C3: 93 (Rosenbaum, pers. commn)

## Breeding Stock D

## Absolute abundance estimate

From Hedley et al. (2008)
Single platform aerial line transect and land-based surveys:
Estimated abundance of northward-migrating whales during that time (2 June-7 Sep 2008) is $\mathbf{2 1 7 5 0}$ (95\% CI: $\mathbf{1 7 5 5 0} \mathbf{- 4 3 0 0 0}$ ). This estimate is based on an estimate of relative abundance of surface whales of 11850 (9550-23450) and an estimated $g(0)$ of $0.54(+-0.21)$. Note the numbers in parenthesis are $95 \%$ percentile intervals and these do not include variance in $g(0)$.

## Relative abundance estimates

From Bannister and Hedley (2001)
IWC 1996: Aerial survey estimate for 1999 is 3441 (95\%CI 2757, 4294)

| Year | Estimate |
| :--- | :--- |
| 1982 | 10.2 |
| 1986 | 16.2 |
| 1988 | 12.7 |
| 1991 | 23.6 |
| 1994 | 36 |

From Matsuoka et al. (in press)
JARPA surveys conducted during 1989/90-2004/05 austral summer seasons (January and February) alternating survey areas between Area IV ( $70^{\circ} \mathrm{E}-130^{\circ} \mathrm{E}$ ) and Area V $\left(130^{\circ} \mathrm{E}-170^{\circ} \mathrm{W}\right)$, all south of $60^{\circ} \mathrm{S}$. Areas IV and V were divided into 2 sectors, western and eastern. Each sector was divided into northern ( $60^{\circ} \mathrm{S}$ to 45 n . miles from ice-edge) and southern (from ice-edge to 45 n . miles away). BSD corresponds to Area IV.

| Year | Estimate | CV |
| :--- | :--- | :--- |
| 1989 | 5325 | 0.302 |
| 1991 | 5408 | 0.188 |
| 1993 | 2747 | 0.153 |
| 1995 | 8066 | 0.142 |
| 1997 | 10657 | 0.166 |
| 1999 | 16751 | 0.143 |
| 2001 | 31134 | 0.123 |
| 2003 | 27783 | 0.115 |

IDCR/SOWER estimates come from Branch (in press) $\left(60^{\circ} \mathrm{E}-120^{\circ} \mathrm{E}\right)$.

| Year | Estimate | CV |
| :--- | :--- | :--- |
| 1978 | 1219 | 0.46 |
| 1988 | 4202 | 0.52 |
| 1997 | 17959 | 0.17 |

CPUE data from Chittleborough (1965)
Area IV $\left(70^{\circ} \mathrm{E}-130^{\circ} \mathrm{E}\right)$

| Year | Estimate |
| :--- | :--- |
| 1950 | 0.475 |
| 1951 | 0.424 |
| 1952 | 0.347 |
| 1953 | 0.353 |
| 1954 | 0.351 |
| 1955 | 0.244 |
| 1956 | 0.178 |
| 1957 | 0.146 |


| 1958 | 0.123 |
| :--- | :--- |
| 1959 | 0.09 |
| 1960 | 0.062 |
| 1961 | 0.055 |
| 1962 | 0.051 |

Minimum number of haplotypes (Rosenbaum et al., 2006)
51

## Breeding Stock E

## Absolute abundance estimate

From Noad et al. (2006)
In 2004 a land-based survey was conducted at Pt Lookout on the east coast of Australia over 14 weeks from 25 May to 27 August. The Hermite polynomial method was used to arrive at an absolute abundance estimate of $\mathbf{7 0 9 0} \pm \mathbf{6 6 0}$ ( $\mathbf{9 5 \%} \mathbf{C I}$ ) for 2004.

## Relative abundance estimates

Values provided by M. Noad (pers. commn), used for assessment in Noad et al. (2008).
Estimates from land-based surveys conducted at Pt Lookout and two other locations. The values give the number of whales passing per 10h during 4 weeks of the peak migration.

| Year | Estimate |
| :--- | :--- |
| 1984 | 6.1175 |
| 1985 | 5.92 |
| 1986 | 8.245 |
| 1987 | 8.5272 |
| 1988 | 9.1475 |
| 1989 | 10.22 |
| 1990 | 11.5815 |
| 1991 | 12.9275 |
| 1992 | 14.3575 |
| 1994 | 17.7525 |
| 1996 | 20.9075 |
| 1998 | 28.445 |
| 1999 | 27.454 |
| 2001 | 34.666 |
| 2002 | 37.34 |
| 2004 | 47.11 |
| 2007 | 70.73 |

CPUE (Chittleborough, 1965)
Area V $\left(130^{\circ} \mathrm{E}-170^{\circ} \mathrm{W}\right)$

| Year | Estimate |
| :--- | :--- |
| 1953 | 0.972 |
| 1954 | 0.755 |
| 1955 | 0.779 |
| 1956 | 0.704 |
| 1957 | 0.714 |
| 1958 | 0.75 |
| 1959 | 0.74 |
| 1960 | 0.522 |
| 1961 | 0.23 |
| 1962 | 0.69 |

Feeding area (JARPA)
From Matsuoka et al. (in press)
Surveys conducted during 1989/90-2004/05 austral summer seasons (January and February) alternating survey areas between Area IV $\left(70^{\circ} \mathrm{E}-130^{\circ} \mathrm{E}\right)$ and Area V $\left(130^{\circ} \mathrm{E}-170^{\circ} \mathrm{W}\right)$, all south of $60^{\circ} \mathrm{S}$. Areas IV and V were divided into 2 sectors, western and eastern. Each sector was divided into northern ( $60^{\circ} \mathrm{S}$ to 45 n . miles from ice-edge) and southern (from ice-edge to 45 n . miles away). BSE corresponds to Area V.

| Year | Estimate | CV |
| :--- | :--- | :--- |
| 1990 | 602 | 0.343 |
| 1992 | 4388 | 0.623 |
| 1994 | 3678 | 0.307 |
| 1996 | 1474 | 0.274 |
| 1998 | 3831 | 0.430 |
| 2000 | 5128 | 0.215 |
| 2002 | 2873 | 0.157 |
| 2004 | 9342 | 0.337 |

IDCR/SOWER estimates for the breeding grounds (Branch, in press)
Here breeding stock E estimates corresponds to south of $60^{\circ} \mathrm{S}$ and between $120^{\circ} \mathrm{E}-170^{\circ} \mathrm{W}$.

| Year | Mid year | N | CV |
| :--- | :--- | :--- | :--- |
| $1978-1981$ | $80 / 81$ | 995 | 0.58 |
| $1985-1989$ | $85 / 86$ | 622 | 0.50 |
| $1991-1999$ | $92 / 93$ | 3484 | 0.33 |
| $1998-2004$ | $01 / 02$ | 13300 | 0.22 |

Minimum number of haplotypes (Rosenbaum et al.,2006)
Total: 108
E2: 60
E3: 48
From Olavarria et al.(2006): E1: 42

## Breeding Stock F

## Absolute abundance estimate

From Baker et al. (2006)
The estimate arises from a sighting-resighting analysis of individual identification photos collected from 1999 to 2004. Survey areas were New Caledonia and Tonga (E2 and E3), Cook Islands and French Polynesia (F).

| Year | N | CV |
| :--- | :--- | :--- |
| 2002 | 3827 | 0.12 |

## Relative abundance estimates

IDCR/SOWER estimates for the breeding grounds. (Branch, in press)
In Branch (in press) BSF corresponds to the area south of $60^{\circ} \mathrm{S}$ and between $170^{\circ} \mathrm{W}-110^{\circ} \mathrm{W}$, where the naïve model is assumed.

| Year | Mid year | N | CV |
| :--- | :--- | :--- | :--- |
| $1982-1984$ | $83 / 84$ | 3240 | 0.47 |
| $1989-1991$ | $90 / 91$ | 2976 | 0.51 |
| $1995-2001$ | $97 / 98$ | 3852 | 0.22 |

Minimum number of haplotypes (Rosenbaum et al., 2006)
Total: 230
F1: 131
F2: 99

## Breeding Stock G

## Absolute abundance estimate

From Felix et al. (in press)
Breeding ground estimate is from a photographic mark-recapture study in Ecuador, and is based on Chapman modified-Peterson estimator.

| Year | N | CV |
| :--- | :--- | :--- |
| 2006 | 6504 | 0.21 |

## Relative abundance estimates

IDCR/SOWER estimates for the breeding grounds (Branch, in press)
Area for G: $110^{\circ} \mathrm{W}-50^{\circ} \mathrm{W}$, south of $60^{\circ} \mathrm{S}$

| 1982 | 1452 | 0.65 |
| :--- | :--- | :--- |
| 1989 | 2817 | 0.38 |
| 1996 | 3310 | 0.21 |

Minimum number of haplotypes (Rosenbaum et al., 2006)
148


[^0]:    ${ }^{1}$ MARAM (Marine Resource Assessment and Management Group), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701, South Africa

