Two further sets of results are presented here that are in addition to those presented in document 57.

1) Alternate CMP 4 runs which examine alternate TAC transfer options

(i) transfer 20\% from $A 8+$ to $A 3+4, A 5+6$ and $A 7$ in ratio 20:30:50 (i.e. more to $A 5+6$, less to A3+4).
(ii) transfer 20\% from $A 8+$ to $A 3+4, A 5+6$ and $A 7$ in ratio 10:50:40 (i.e. more to $A 5+6$, less to A3+A7)

	CMP 4	CMP 4 alternative (i)	CMP 4 alternative (ii)
A34:A56:A7 ratio	$\mathbf{3 0 : 2 0 : 5 0}$	$\mathbf{2 0 : 3 0 : 5 0}$	$\mathbf{1 0 : 5 0 : 4 0}$
A1+2	$1.39(0.67 ; 1.01)$	$1.39(0.67 ; 1.02)$	$1.38(0.68 ; 1.02)$
A3+4	$0.92(0.07 ; 0.53)$	$1.03(0.22 ; 0.65)$	$1.19(0.38 ; 0.77)$
A5+6	$1.69(1.30 ; 1.45)$	$1.65(1.27 ; 1.41)$	$1.54(1.20 ; 1.33)$
A7	$2.15(0.26 ; 1.11)$	$2.11(0.26 ; 1.08)$	$2.16(0.26 ; 1.12)$
A8+	$0.85(0.42 ; 0.65)$	$0.82(0.45 ; 0.64$	$0.78(0.39 ; 0.62)$
T	$1.30(0.73 ; 0.96)$	$1.30(0.73 ; 0.97)$	$1.30(0.72 ; 0.97)$

2) Examine impact of assuming the "alternate: poaching split for future poaching levels.

Results are compared with CMP 3 results. In both cases the SAME OMs are used which have been fitted to data assuming the $80: 20$ poaching split. Thus the $35: 65$ poaching split applies to the FUTURE (2009+) only.

Super-area splits of poaching assumed

	$\mathbf{8 0 : 2 0}$ split "baseline"	35:65 split "alternative"
A1+2	1.1%	0.15%
$A 3+4$	2.5%	24.97%
$A 5+6$	2.5%	30.13%
A7	14%	10%
A8	80%	34.75%

Table reporting B75m(2021/2006) median values (with $5^{\text {th }}$ and $25^{\text {th }}$ percentiles in parentheses).

	CMP 3	CMP 3
Poaching split between A8:A1-7	$80: 20$	$35: 65$
\#	50	50
simulations	3000	3000
α	$1.40(0.67 ; 1.02)$	$1.19(0.62 ; 0.94)$
A1+2	$0.82(0.17 ; 0.46)$	$0.73(0.04 ; 0.29)$
A3+4	$1.77(1.35 ; 1.51)$	$1.89(1.20 ; 1.55)$
A5+6	$2.12(0.26 ; 1.07)$	$1.45(0.21 ; 0.63)$
A7	$0.88(0.47 ; 0.68)$	$0.99(0.58 ; 0.80)$
A8+	$0.29(0.74 ; 0.98)$	$1.27(0.71 ; 0.94)$
T	1.29	

The results shown in the table above clearly only implement the alternative poaching scenario partially. The full implementation requires all five super-area model assessments to be re-fitted to the data using the $35: 65$ historic poaching assumption, for both a past historic poaching level of 500 MT and 250 MT. These assessments are being run at the moment.

FISHERIES/2011/OCT/SWG-WCRL/57_addendum

