Initial Applications of Statistical Catch-at-Age Assessment Methodology to Atlantic redfish

Rebecca A. Rademeyer and Doug S. Butterworth
September 2011

Abstract

Summary Age structured production model assessments are explored for four redfish populations. The reason for introducing age-structure into the models is to allow a sounder reality check of the estimates of the survey catchability coefficients q that result when the models are fit to data. The data fitted are the survey abundance trends plus catch-at-length information from both surveys and the commercial catches. The catches-at-length are used to estimate selectivity-at-age relationships, though some assumptions are required, particularly for the commercial information which is not available in species disaggregated form. Only for S. fasciatus in Unit 3 is the survey trend compatible with the expected impact of past catches in terms of a simple density-dependent population model, and the associated assessment results could be used to inform reference point determination for this population. However for the other three populations considered (S. mentella and S. fasciatus in Units $1+2$ and S. fasciatus in 2 J 3 K) further assumptions are needed (e.g. regime shifts related to changes in productivity) to achieve compatibility between model output and survey trends, so that population model-based assessment of the current status of these populations is problematic. The most immediate concern for these three populations would seem to be whether or not current levels of catch are sustainable, and a suggestion is made as to how that might be addressed.

Introduction

To our knowledge, McAllister and Duplisea (2011) reports the first attempt to use population model based assessments of the redfish populations in Atlantic Canada's EEZ to inform the determination of reference points. Clearly, in principle, the choice of management reference points, such as biomass LRPs, is best made on basis of the fits of such population models to available data.

However it is also important, before the results from such approaches might be adopted, to check that the models used do provide acceptable fits to these data. The estimates from these models also need to be checked for plausibility through considering their reasonable compatibility with comparative results for redfish populations elsewhere, and general understanding of the population monitoring data (such as abundance indices from surveys) to which the models are fit.

This paper presents the results of some initial applications of Statistical Catch-at-Age methodology (SCAA - sometimes known as Age Structured Production Models, or ASPM) to data for:
a) S. mentella in Units $1+2$,
b) S. fasciatus in Units $1+2$,
c) S. fasciatus in Divisions 2 J 3 K , and
d) S. fasciatus in Unit 3.

The particular intent of this exercise is to perform the checks indicated above:
a) to examine whether models show consistency with trends in survey estimates of abundance (a diagnostic of particular importance in assessing the reliability of model results) for the simplest form of these models, or if not explore whether this consistency can be restored by admitting the possibility of simple changes over time in some model parameter; and
b) given that survey data have been analysed on a swept area basis, to provide estimates of abundance in absolute terms, to check whether the estimates of the values of the constants of proportionality (q) relating these to the biomass estimates provided by the population model fits appear plausible.

The special reason for moving from the age-aggregated production model framework of McAllister and Duplisea (2011) to SCAA is to be able to address b). Production models incorporate a somewhat artificial construction for the "biomass" which they estimate, and these estimates can be considerably biased as measures of the actual underlying resource abundance. In contrast, SCAA in the form of ASPM (with a deterministic stock recruitment function) provides the simplest approach which can claim to reflect the actual age-structure of the biomass being modelled and estimated, and hence provide estimates of q that would be expected to be close to 1 if all fish are available to the gear, and there is no appreciable herding by the net or avoidance behaviour by the fish. (Indeed redfish are semi-pelagic, and Power and Mowbray (2000) estimate that some 20% would be too high in the water column to be available to the research trawl gear, which lowers the value close to 1 just mentioned for q to 0.8.) We note, for example the recent estimates of q provided by NAFO XSA (agestructure based) assessments of redfish in Division 3M which range from 1.22 to 1.98, averaging 1.69 with a standard deviation of 0.41 (R Alpoim, pers. commn). An immediate expectation is that q estimates for assessments of the four stocks above should not differ greatly from these values unless some cogent rationale can be offered for the case in question.

Data and Methodology

The catch and survey based data (including catch-at-length information) and some biological data are listed in Tables in Appendix A.

The details of the SCAA assessment methodology are provided in Appendix B.
Particular difficulties for these redfish assessments arise from the facts that the commercial catches, and also information on their length distributions (in contrast to the situation for the surveys), do not distinguish the two species S. mentella and S. fasciatus. Thus catch by species information input to our assessments rests on assumptions and is open to question, while the combined species length distribution information likely reflects more smaller fish than in the actual S. mentella distribution, and vice versa for S. fasciatus (D Power, pers. commn). Though some of the SCAA models are fitted to combined species commercial catch length distributions, the inevitable errors that this involves should not be seen as necessarily a major impediment to the approach. This is because in moving to an ASPM approach for greater realism, the intent is to achieve this through use of a commercial selectivity-atlength function which is "in the right ball-park", rather than requiring exactitude.

In any case, in conducting these ASPM assessments, sensitivity to variations of the estimated selectivity-at-length function is investigated. Furthermore, for one of the three S. fasciatus stocks considered (Divisions 2J3K), commercial catch at length information was not available, so that the selectivity-at-length function estimated for S. fasciatus in Units $1+2$ was used as a fixed input to this other ASPM assessment.

The decision was made to assume constant selectivity-at-length (though differing by species, and amongst surveys and commercial catches) for these assessments, as it seems likely to be more realistic than to assume constant selectivity-at-age in generating expected length distributions from the population model to fit to observed length distributions. The approach used assumes distributions of length-at-age that are invariant over time, leading to the effective selectivities-at-age age that are used in accounting for effect of catches on the age-structured population dynamics, as elaborated in Section B. 3 of Appendix B.

Stock- specific features of the assessments and associated sensitivities conducted are as follows.

S. mentella in Units 1+2

As the simplest time-invariant ASPMs are unable to reflect the downward trends in the survey indices, a change in the unexploited equilibrium spawning biomass (K) is introduced, with the time (1982) of the change being determined so as to achieve the best fit to the data. Note that allowing K to change is effectively equivalent to changing expected recruitment levels in transitions between presumably different regimes with differing levels of productivity. For the Base Case chosen, the selectivity-at-length estimated from fitting to the commercial catch-at-length distributions is shifted to the right to allow qualitatively for the S. mentella tending towards the larger end of the combined species length distribution data (D. Power, pers. commn). Other sensitivities include:

- the time series commencing with the resource at different fractions of K,
- forcing the survey multiplicative bias factor q to be less than 1 ,
- allowing for error in the splitting of catches between species, both as an absolute percentage fixed over time, and as a trend over time, and
- increasing the natural mortality by 50% to 0.15 .

S. fasciatus in Units $1+2$

As above for S. mentella, a change in K, here from 1981, is needed to allow the model to reflect the downward trend in the survey in Unit 1 in the early 1990's. The Base Case shifts the estimated selectivity-at-length for the commercial catch to the left because the lengths of this species in this catch tend to be lower (D. Power, pers. commn). A sensitivity examines restricting the survey q to be less than 1, while another increases the natural mortality by 50% to 0.1875 .

S. fasciatus in Divisions 2J3K

The approach here is similar to that for Units $1+2$, and fixing the commercial selectivity-atlength to be the same as for the assessment for that region. Survey trends are, however, not compatible with a single change only in K, but require the more complex behaviour of a decrease from 1960 to 1970, followed later by an increase from 1990 to 2000 and constancy thereafter. The choice of this form was made by first conducting an assessment that allowed for a random walk in K from year to year, and then choosing a parsimonious parameterization of the temporal pattern that emerged.

S. fasciatus in Unit 3

Here there is some indication in the survey data of an upward response to the cutback in catches that occurred in the mid-1970s. Sensitivities focus mainly on varying the value of q for the standard assessment model without any change in K over time.

Results

S. mentella in Units 1+2

The results of the ASPM variants explored are listed in Table 1, with corresponding spawning biomass trajectories plotted in Fig. 1. The commercial and survey selectivities estimated for Cases 1 (M\&D K and θ), 2 (K estimated and $\theta=1$), 3a (as 2 but commercial selectivity-atlength shifted to the right by 5 cm) and the Base Case (as 2 but commercial selectivity-atlength shifted to the right by 10 cm) assessments are plotted in Fig. 2. (Note: the Base Case is what we would tentatively offer as the best of the various options we investigate for each population. In this case the allowance for a rightward shift in the commercial selectivity compared to that estimated from the length distribution for catches from the two species combined is an attempt to allowed for the difference in the length distributions, if disaggregated by species, as advised by D. Power.)

Cases 6 and 7 allow for error in the splitting of catches between species and the resulting assumed catch series are shown in Fig. 3.

The fit of the Base Case to the survey indices and the commercial and survey CAL are shown in Figs 4 and 5 respectively.

S. fasciatus in Units 1+2

The results of the ASPM variants explored for S. fasciatus in Units $1+2$ are listed in Table 2, with corresponding spawning biomass trajectories plotted in Fig. 6. The commercial and survey selectivities estimated for Cases 3 (change in K in 1982), 4a (as 3 but commercial selectivity-at-length shifted to the left by 2 cm) and the Base Case (as 3 but commercial selectivity-at-length shifted to the left by 5 cm) assessments are plotted in Fig. 7.

The fit of the Base Case to the survey indices and the commercial and survey CAL are shown in Figs 8 and 9 respectively.

S. fasciatus in Division 2J3K

The results of the ASPM variants explored for S. fasciatus in Division 2J3K are listed in Table 3, with corresponding spawning biomass trajectories plotted in Fig. 10. The Base Case includes changes in carrying capacity over time and the resulting trajectory is also plotted in Fig. 10. The commercial and survey selectivities for the Base Case assessment are plotted in Fig. 11.

The fit of the Base Case to the survey index and the survey CAL are shown in Figs 12 and 13 respectively.

S. fasciatus in Unit 3

The results of the ASPM variants explored for S. fasciatus in Unit 3 are listed in Table 4, with corresponding spawning biomass trajectories plotted in Fig. 14. The commercial and survey selectivities for the Base Case assessment are plotted in Fig. 15.

The fit of the Base Case to the survey index and the commercial and survey CAL are shown in Figs 16 and 17 respectively.

Discussion

S. mentella 1+2: the Base Case provides a fit to the surveys that is just about acceptable (if one considers the earliest Unit 1 value an outlier - see Fig. 4). Once a change in K is admitted, the present resource status changes from highly depleted to generally above K. This arises because initially there are more older fish than would be present under pristine equilibrium conditions for the new lower K, with consequential lower recruitment, and catches after the drop in K take time to reduce this "reserve" of older fish. Other sensitivities make little qualitative difference. For the Unit 2 survey, q marginally exceeds 1 for the Base Case (Table 1).
S. fasciatus $1+2$: a change in K is essential here to try to reflect the downward trend in the Unit 1 survey in the early 1990s, but the resultant fit to the data remains inadequate. The associated assessment suggests that while the resource had dropped to well below the original value of K, it is now above the MSY biomass level for the new lower K. For the Unit 2 survey, q for the Base Case is well above 1 at 3 ; for lower values of this q, the fits to the survey data trends deteriorate appreciably (Table 2).
S fasciatus 2J3K: this is an important case because after dropping to very low levels, the survey results have recently shown some increase (Fig. 12). This is not the case for either S. mentella or S. fasciatus in Unit 1+2 where the most recent survey results remain low, which could in turn suggest that some Allee effect might be in operation. This 2 J 3 K case confirms that these redfish resources can recover from low survey values, which suggests that an Allee effect is less likely to be in operation for these populations. Similarly to the previous case, the Base Case model estimates q to be about 3 , with substantial deterioration of fits to these data for lower q values (Table 3). This arises because lower q values mean larger abundances in absolute terms, and the catches taken then become too small to impact abundance and hence survey trends to the extent evident from the survey data.

S fasciatus Unit 3: Here the survey data are compatible with the standard population model, and the q estimate of 0.62 would seem perfectly plausible (Table 4). However because the data are fairly noisy, this estimate of q is not that precise, with a likelihood profile indicating a $95 \% \mathrm{Cl}$ range of [0.42; 0.87].

Generally fits to survey CAL data seem reasonable in terms of random patterns in residuals (except perhaps for S. fasciatus in 2 J 3 K). There are however systematic effects for the commercial CAL data, which suggest changes over time in the selectivity pattern, but these seem unlikely to be sufficiently large to invalidate the utility of the results.

Increasing natural mortality, M, leads to lower estimates of q, but not always to improved fits to the data.

Concluding remarks

Only for one of the four cases considered (S. fasciatus in Unit 3) do these analyses suggest the survey data trends to be consistent with the impact of catches on abundance trends that is to be expected for a standard density-dependent population model. In this case the model fitted might be used to provide estimates of reference points.

However for the other three cases, one has either to assume a systematic change in q over time (which then really leaves little basis to draw inferences about population trends and statuses), or assume a shift to a less productive regime (lower K and lower recruitment), with a later reverse shift in one case.

While there are some aspects of these population model analyses which more complex approaches might resolve, these fundamental problems seem likely to remain, which raises the question of how then best to proceed? The most important management question for these other three resources would then seem to be whether or not current levels of catch are sustainable. One way of addressing that could be to select a plausible range for q based on existing satisfactory results (e.g. perhaps those for S. fasciatus in Unit 3 from this study and the NAFO analysis for 3M mentioned above), and use that information to provide ranges for current biomass in the other three cases considered here. Yield-per-recruit analyses, or the S. fasciatus Unit 3 analysis above, can provide estimates of sustainable fishing mortality levels. Combining these last with the biomass ranges would provide numbers that could be compared with current catch levels to reach some conclusions concerning their likely sustainability.

Acknowledgements

We thank DFO scientists and particularly Daniel Duplisea, Don Power) and Peter Comeau for providing data beyond that already listed in McAllister and Duplisea (2011) to allow us to implement SCAA methodology for these redfish populations.

References

McAllister M and Duplisea D. 2011. Production model fitting and projection for Atlantic redfish (Sebastes fasciatus and Sebastes mentella) to assess recovery potential and allowable harm.

Power D and Mowbray F. 2000. The status of redfish in Unit 2. DFO CSAS Res. Doc. 2000/136. 56pp.

Table 1: Results of fits of various SCAA variants for S. mentella in Units $1 \mathbf{+ 2}$. Values fixed on input rather than estimated are shown in bold. Mass units are ' 000 t. In cases where the value of the pre-exploitation spawning biomass K changes within the assessment period, the second column reports estimates for the latter period. M\&D is McAllister and Duplisea (2011).

	Case 1	Case 2	Case 3a	Case 3b	Case 4a	Case 4b	Case 5a	Case 5b	Case 6a	Case 6b	Case 6c	Case 6d	Case 7a	Case 7b	Case 8
	Initial as in M\&D	Change in K in 1982	Comm Sel shifted 5 cm to the right	Base Case Comm Sel shifted 10 cm to the right	As BC, SR residuals estimated	As 4a, with $q<1$	$\begin{aligned} & \text { As BC, } \\ & \theta=0.75 \end{aligned}$	$\begin{gathered} \text { As BC, } \\ \theta=0.5 \end{gathered}$	As BC, $+10 \%$ trend in catches	As BC - 10% trend in catches	As BC, +100\% trend in catches	As BC, -100% trend in catches	As BC, $+10 \%$ in the proportion of mentella	As BC, -10% in the proportion of mentella	$\begin{gathered} \text { As BC, } \\ M=0.15 \end{gathered}$
-InL: overall	293.3	42.6	81.1	152.0	94.9	114.6	165.7	176.5	145.3	157.5	141.3	182.3	151.4	152.6	144.0
-InL: survey	237.2	13.0	9.9	28.0	11.1	27.7	37.1	44.1	23.2	31.7	14.2	48.4	27.5	28.3	24.2
-InL: survCAL	24.8	7.2	19.1	5.3	12.9	3.7	5.9	6.9	5.6	5.5	13.7	7.8	5.3	5.4	8.2
-InL: comCAL	31.3	22.5	52.2	118.6	102.0	115.3	122.7	125.4	116.3	120.2	113.4	126.1	118.5	118.8	111.6
-InL: RecRes	0	0	0	0	-31.0	-32.1	0.0	0	0	0	0	0	0	0	0
h	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
M	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15
θ	0.81	1.00	1.00	1.00	1.00	1.00	0.75	0.50	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ζ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$K^{\text {sp }}$	1212	80034	71535	79336	80231	79948	104955	155287	74233	83440	63050	124576	93043	64729	82254
$B^{\text {Sp }}{ }_{2009}$	941	35	27	78	30	84	139	246	62	93	46	233	90	65	88
$B^{5 p}{ }_{2009} / K^{5 p}$	0.78	0.041 .01	$0.04 \quad 0.77$	$0.10 \quad 2.14$	0.040 .99	0.101 .72	$0.13 \quad 2.54$	0.162 .82	0.081 .87	$0.11 \quad 2.35$	$0.07 \quad 0.92$	0.193 .08	0.102 .12	$0.10 \quad 2.19$	0.111 .65
MSYL ${ }^{\text {SP }}$	0.32	0.31	0.32	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.40
$B^{s p}{ }_{\text {MSY }}$	384	11	11	12	10	17	19	30	11	14	17	26	15	10	22
MSY	43	1	1	1	1	2	2	4	1	2	2	3	2	1	3
Survey	q 's $\sigma_{\text {surv }}$														
Unit 1	0.07 (0.89)	0.71 (0.51)	0.96 (0.50)	0.36 (0.56)	0.83 (0.50)	0.35 (0.55)	0.21 (0.58)	0.13 (0.60)	0.44 (0.54)	0.31 (0.57)	0.55 (0.51)	0.14 (0.61)	0.31 (0.55)	0.44 (0.56)	0.27 (0.55)
Unit 2	0.13 (0.41)	2.29 (0.20)	3.11 (0.20)	1.02 (0.22)	2.68 (0.20)	1.00 (0.21)	0.59 (0.22)	0.34 (0.22)	1.28 (0.21)	0.87 (0.22)	1.73 (0.21)	0.36 (0.22)	0.88 (0.22)	1.24 (0.22)	0.86 (0.21)
$\sigma_{R_{-} \text {out }}$	0	0	0	0	0.19	0.16	0	0	0	0	0	0	0	0	0

Table 2: Results of fits of various SCAA variants for S. fasciatus in Units $\mathbf{1 + 2}$. Values fixed on input rather than estimated are shown in bold. Mass units are '000t. In cases where the value of the pre-exploitation spawning biomass K changes within the assessment period, the second column reports estimates for the latter period. M\&D is McAllister and Duplisea (2011).

	$\begin{aligned} & \text { Initial as in } \\ & \quad \text { M\&D } \\ & (1+2+3 \text { LNO }) \end{aligned}$		K est, $\theta=1$		As 2, change in K in 1981		As 3, Comm Sel shifted 2 cm to the left		Base Case As 3, Comm Sel shifted 5 cm to the		$\begin{gathered} \text { As BC, but } \\ q<1 \end{gathered}$		$\begin{gathered} \text { As BC, } \\ M=0.1875 \end{gathered}$	
-InL: overall	176		252.9		116.5		119.4		128.6		162.7		144.5	
-InL: survey	142		216.9		93.3		94.1		95.0		137.3		105.5	
-InL: survCAL	-1.21		-0.2		-3.3		-4.5		-5.8		-0.5		-5.8	
-InL: comCAL	34.7		36.2		26.6		29.8		39.5		25.9		44.8	
-InL: RecRes	0		0		0		0		0		0.0		0	
h	0.67		0.67		0.67		0.67		0.67		0.67		0.67	
M	0.125		0.125		0.125		0.125		0.125		0.125		0.188	
θ	0.80		1.00		1.00		1.00		1.00		1.00		1.00	
ζ	0.00		0.00		0.00		0.00		0.00		0.00		0.00	
$K^{s p}$	3328		24343*		559	69	569	69	587	71	684	134	569	68
$B^{5 P}{ }_{2009}$	3176		24229		39		40		40		119		54	
$B^{5 p}{ }_{2009} / K^{5 p}$	0.95		1.00		0.07	0.57	0.07	0.57	0.07	0.56	0.17	0.89	0.09	0.79
MSYL ${ }^{\text {sp }}$	0.32		0.32		0.34		0.34		0.33		0.33		0.32	
$B^{s p}{ }_{\text {MSY }}$	1057		7725		24		23		23		44		22	
MSY	138		997		3		3		3		5		4	
Survey	q 's	$\sigma_{\text {surv }}$												
Unit 1	0.01	1.00	0.00	0.99	0.69	0.69	0.67	0.70	0.64	0.70	0.24	0.81	0.43	0.73
Unit 2	0.04	0.32	0.01	0.32	3.18	0.33	3.14	0.33	3.09	0.33	1.00	0.33	2.09	0.34
$\sigma_{R-\text { out }}$	0		0		0		0		0		0		0	

* Estimate is infinity - the fitting algorithm stops at this value

Table 3: Results of fits of various SCAA variants for S. fasciatus in Divisions 2J3K. Values fixed on input rather than estimated are shown in bold. Mass units are '000t. In cases where the value of the pre-exploitation spawning biomass K changes within the assessment period, the second column reports estimates for the middle period (1970-1990) and the third column for the end of the assessment period. M\&D is McAllister and Duplisea (2011).

	Case 1 Initial as in M\&D	$\begin{gathered} \text { Case } 2 \\ K \text { est, } \theta=1 \end{gathered}$	Case 3 Base Case 3 changes in K			Case 4 As BC, with $q=1.0$			Case 5 As BC, with $M=0.1875$		
-InL: overall	1305.8	1186.1	335.1			492.7			342.7		
-InL: survey	1283.4	1156.5	288.8			436.8			301.4		
-InL: survCAL	22.4	29.6	46.3			55.8			41.3		
-InL: comCAL	0.0	0.0	0.0			0.0			0.0		
-InL: RecRes	0	0	0			0			0		
-InL: Kpen											
h	0.67	0.67	0.67			0.67			0.67		
M	0.125	0.125	0.125			0.125			0.188		
θ	0.91	1.00	1.00			1.00			1.00		
ζ	0.00	0.00	0.00			0.00			0.00		
$K^{5 p}$	151	24343*	187	3	123	223	3	349	238	3	62
$B^{\text {Sp }}{ }_{2009}$	135	24333	6			24			9		
$B^{5 p}{ }_{2009} / K^{5 p}$	0.89	1.00	0.03	1.58	0.05	0.11	6.64	0.07	0.04	2.43	0.15
MSYL ${ }^{\text {Sp }}$	0.33	0.33	0.33			0.33			0.32		
$B^{\text {Sp }}{ }_{\text {MSY }}$	49	7954	40			114			20		
MSY	6	1001	5			14			4		
Survey	q's $\sigma_{\text {surv }}$	q's $\sigma_{\text {surv }}$	q's	$\sigma_{\text {surv }}$			$\sigma_{\text {surv }}$		q's $\sigma_{\text {surv }}$		
2J3K	0.15 (2.32)	0.001 (2.18)	3.58	(1.16)		1.00			2.82 (1.19)		
$\sigma_{R-\text { out }}$	0	0	0			0			0		

Table 4: Results of fits of various SCAA variants for S. fasciatus in Unit 3. Values fixed on input rather than estimated are shown in bold. Mass units are '000t. M\&D is McAllister and Duplisea (2011).

	Case 1 Initial as in M\&D	Case 2 Base Case as $\begin{gathered} 1, K \text { est, } \\ \theta=1 \end{gathered}$	Case 3 a As $B C, q=0.5$	Case 3b As BC, $q=1.0$	Case 3c As BC, $q=1.5$	Case 4 As BC, with $M=0.1875$
-InL: overall	95.2	78.5	79.2	82.7	93.1	68.3
-InL: survey	5.5	7.8	7.3	8.7	8.1	5.5
-InL: survCAL	47.4	34.5	35.7	34.8	39.0	28.5
-InL: comCAL	42.3	36.1	36.2	39.2	46.0	34.2
-InL: RecRes	0	0	0	0	0	0
h	0.67	0.67	0.67	0.67	0.67	0.67
M	0.125	0.125	0.125	0.125	0.125	0.188
θ	0.82	1.00	1.00	1.00	1.00	1.00
ζ	0.00	0.00	0.00	0.00	0.00	0.00
$K^{5 p}$	3134	202	220	179	170	409
$B^{5 p}{ }_{2009}$	3053	127	149	89	61	374
$B^{5 p}{ }_{2009} / K^{5 p}$	0.97	0.63	0.68	0.49	0.36	0.91
MSYL ${ }^{\text {Sp }}$	0.31	0.31	0.31	0.31	0.31	0.29
$B^{s p}{ }_{\text {MSY }}$	967	62	68	55	53	121
MSY	113	7	8	7	6	23
Survey	q 's $\sigma_{\text {surv }}$					
Unit 3	0.02 (0.70)	0.62 (0.74)	0.50 (0.73)	1.00 (0.75)	1.50 (0.74)	0.16 (0.70)
$\sigma_{R-\text { out }}$	0	0	0	0	0	0

Figure 1: Spawning biomass trajectories in absolute terms for the different variants for \boldsymbol{S}. mentella in Unit 1 + 2 .

Figure 2: Survey and commercial fishing selectivities-at-length and consequent effective selectivities-at-age estimated for Cases 1, 2, 3a and the Base Case assessments for \boldsymbol{S}. mentella, Units $\mathbf{1 + 2}$. The survey selectivities for all four cases are set to be the same as for the Base Case.

Figure 3: Total catch assumed for S. mentella, Units $1+2$ for the Base Case assessment, Cases 6c, 6d (Cases 6a and 6b lie between these and the Base Case) and Cases 7a, 7b.

Figure 4: Fit to the survey abundance indices for the Base Case and Case 1 assessments for \boldsymbol{S}. mentella in Unit 1 + 2 .

Figure 5: Fit of the Base Case assessment for S. mentella in Unit $1+2$ to the survey and commercial catch-at-length data. The left side plots compare the observed and predicted CAL as averaged over all years for which data are available, while the right side plots show the standardised residuals, with the size (area) of the bubbles being proportional to the magnitude of the corresponding standardised residuals. For positive residuals, the bubbles are grey, whereas for negative residuals, the bubbles are white.

Figure 6: Spawning biomass trajectories in absolute terms for different variants of the assessment and total catch assumed for S. fasciatus in Unit $\mathbf{1 + 2}$.

Figure 7: Commercial (top row) fishing selectivities-at-length and consequent effective selectivities-at-age estimated for Cases 3, 4a and the Base Case and survey (bottom row) fishing selectivities-at-length and at-age for the Base Case assessment for S. fasciatus, Units $1+2$.

Figure 8: Fit to the survey abundance indices for the Base Case assessment for \boldsymbol{S}. fasciatus in Unit 1 + 2.

Figure 9: Fit of the S. fasciatus Unit $1+2$ Base Case assessment to the survey and commercial catch-at-length data. The left side plots compare the observed and predicted CAL as averaged over all years for which data are available, while the right side plots show the standardised residuals, with the size (area) of the bubbles being proportional to the magnitude of the corresponding standardised residuals. For positive residuals, the bubbles are grey, whereas for negative residuals, the bubbles are white.

Figure 10: Spawning biomass trajectories in absolute terms for different variants of the assessment for \boldsymbol{S}. fasciatus in Divisions 2J3K. The changes in carrying capacity for the Base Case are shown in the top right-hand plot. The total catch assumed is shown in the bottom plot.

Figure 11: Commercial and survey fishing selectivities-at-length and consequent effective selectivities-at-age for the Base Case assessment for S. fasciatus, Divisions 2J3K.

Figure 12: Fit to the survey abundance index for the Base Case assessment for \boldsymbol{S}. fasciatus in Divisions 2J3K.

Figure 13: Fit of the S. fasciatus Divisions 2J3K Base Case assessment to the survey catch-atlength data. The left side plot compares the observed and predicted CAL as averaged over all years for which data are available, while the right side plot shows the standardised residuals, with the size (area) of the bubbles being proportional to the magnitude of the corresponding standardised residuals. For positive residuals, the bubbles are grey, whereas for negative residuals, the bubbles are white.

Figure 14: Spawning biomass trajectories in absolute terms for different variants of the assessment and total catch assumed for S. fasciatus in Unit 3.

Figure 15: Commercial and survey selectivities-at-length and consequent effective selectivities-at-age estimated for the Base Case assessment for S. fasciatus, Units $\mathbf{1 + 2}$.

Figure 16: Fit to the survey abundance index for the Base Case assessment for \boldsymbol{S}. fasciatus in Unit 3.

Figure 17: Fit of the S. fasciatus Unit 3 Base Case assessment to the survey and commercial catch-at-length data. The left side plots compare the observed and predicted CAL as averaged over all years for which data are available, while the right side plots show the standardised residuals, with the size (area) of the bubbles being proportional to the magnitude of the corresponding standardised residuals. For positive residuals, the bubbles are grey, whereas for negative residuals, the bubbles are white.

APPENDIX A - Data

Note: Units are throughout cm for length and yr for time.

Table A1: Catch in kt for S. mentella and S. fasciatus in the different management units.

Year	S. mentella unit $1+2$	S. fasciatus		
		unit $1+2$	2J3K	unit 3
1960	18.68	17.44	33.00	20.10
1961	15.28	14.11	20.03	19.60
1962	14.34	14.11	9.30	24.00
1963	23.00	20.11	3.36	23.50
1964	29.24	24.48	5.12	10.80
1965	41.97	32.69	9.60	11.00
1966	54.13	42.22	7.13	25.90
1967	63.00	51.08	5.54	6.60
1968	66.62	48.81	4.13	2.90
1969	77.17	61.42	3.17	5.40
1970	77.56	62.35	4.29	15.70
1971	76.73	63.66	3.71	25.60
1972	70.81	56.94	3.35	24.40
1973	96.60	71.33	3.35	17.30
1974	56.27	44.85	6.93	14.20
1975	60.14	48.38	5.67	10.50
1976	37.79	30.30	4.73	7.00
1977	23.80	22.02	5.37	4.80
1978	21.48	20.00	4.33	3.70
1979	18.70	16.49	8.01	2.80
1980	17.40	15.27	8.93	4.00
1981	23.48	20.32	4.66	4.40
1982	24.06	19.70	5.88	4.70
1983	21.33	17.12	5.76	4.90
1984	25.32	18.65	4.84	5.20
1985	22.42	17.41	7.00	5.60
1986	26.83	20.34	7.88	6.60
1987	32.22	25.18	6.32	6.10
1988	35.02	27.60	3.83	3.90
1989	36.84	31.03	1.40	3.30
1990	40.43	34.25	0.67	2.30
1991	49.21	41.53	0.49	2.00
1992	53.16	41.76	0.10	2.50
1993	43.15	35.37	0.05	5.20
1994	23.26	20.46	0.02	5.20
1995	5.96	6.34	0.01	4.80
1996	4.61	4.87	0.00	4.80
1997	4.85	5.13	0.00	6.40
1998	5.40	5.64	0.00	5.80
1999	9.31	9.69	0.01	4.50
2000	5.64	5.77	0.01	4.80
2001	4.74	4.84	0.01	4.30
2002	3.80	3.87	0.01	4.80
2003	3.99	4.31	0.01	3.00
2004	3.28	3.55	0.02	2.10
2005	3.50	3.89	0.03	3.10
2006	3.32	3.84	0.05	2.70
2007	1.74	2.11	0.07	2.90
2008	1.87	2.27	0.06	3.60
2009	2.55	3.18	0.05	4.60

Table A2: Swept area mature (i.e. $>24 \mathrm{~cm}$ for S. mentella, and $>22 \mathrm{~cm}$ for S. fasciatus) biomass estimates (in kt) and coefficients of variation (CVs) for S. mentella in Units 1 and 2, from MacAllister and Duplisea (2011), table 4.

		S. mentella		
Year	Unit 1	CV	Unit 2	CV
1970	-	-	-	-
1971	-	-	-	-
1972	-	-	-	-
1973	-	-	-	-
1974	-	-	-	-
1975	-	-	-	-
1976	-	-	-	-
1977	-	-	-	-
1978	-	-	-	-
1979	-	-	-	-
1980	-	-	-	-
1981	-	-	-	-
1982	-	-	-	-
1983	-	-	-	-
1984	-	-	-	-
1985	-	-	-	-
1986	-	-	-	-
1987	-	-	-	-
1988	-	-	-	-
1989	-	-	-	-
1990	443.012	0.272	-	-
1991	208.702	0.209	-	-
1992	147.726	0.206	-	-
1993	93.656	0.370	-	-
1994	55.785	0.185	-	-
1995	73.626	0.112	-	-
1996	59.242	0.175	-	-
1997	52.723	0.131	-	-
1998	26.391	0.186	-	-
1999	47.859	0.235	-	-
2000	49.549	0.122	223.464	0.233
2001	43.549	0.139	151.356	0.140
2002	67.468	0.797	-	-
2003	95.821	0.609	100.795	0.196
2004	23.963	0.219	-	-
2005	46.166	0.106	90.993	0.118
2006	25.042	0.125	-	-
2007	28.034	0.094	76.633	0.185
2008	79.371	0.462	-	-
2009	11.550	0.147	103.860	0.164

S. fasciatus							
Unit 1	CV	Unit 2	CV	2 J 3 K	CV	Unit 3	CV
-	-	-	-	-	-	55	0.7
-	-	-	-	-	-	71	0.7
-	-	-	-	-	-	133	0.7
-	-	-	-	-	-	133	0.7
-	-	-	-	-	-	31	0.7
-	-	-	-	-	-	209	0.7
-	-	-	-	-	-	26	0.7
-	-	-	-	-	-	100	0.7
-	-	-	-	438	0.477	169	0.7
-	-	-	-	178	1.032	26	0.7
-	-	-	-	552	1.073	15	0.7
-	-	-	-	711	0.49	34	0.7
-	-	-	-	120	0.377	71	0.7
-	-	-	-	1064	0.421	123	0.7
-	-	-	-	92	0.246	96	0.7
-	-	-	-	73	0.248	15	0.7
-	-	-	-	62	0.586	79	0.7
-	-	-	-	17	0.254	59	0.7
-	-	-		62	0.527	79	0.7
-	-	-	-	16	0.526	25	0.7
267.287	-	-	-	41	1.084	56	0.7
188.551	-	-	-	6	0.35	22	0.7
208.862	-	-	-	1	0.384	107	0.7
108.936	-	-	-	1	0.106	69	0.7
70.997	-	-	-	0	0.201	47	0.7
11.269	-	-	-	0	0.086	38	0.7
10.183	-	-	-	2	0.208	42	0.7
26.261	-	-	-	1	0.915	67	0.7
47.989	-	-	-	3	0.309	17	0.7
13.266	-	-	-	2	0.166	61	0.7
19.033	-	119.324	0.498	1	0.217	48	0.7
21.572	-	177.111	0.7	2	0.179	94	0.7
13.495	-	-	-	1	0.665	32	0.7
71.947	-	69.214	0.144	1	0.105	50	0.7
14.234	-	-	-	2	0.941	33	0.7
24.429	-	168.187	0.277	11	0.287	116	0.7
37.737	-	-	-	20	0.685	96	0.7
24.09	-	158.346	0.145	15	0.223	33	0.7
52.778	-	-	-	16	0.214	146	0.7
18.683	-	127.709	0.694	28	0.277	147	0.7

Table A3a: Commercial catch-at-length (number) for Atlantic redfish (all species combined) in Unit 1 (Daniel Duplisea, pers. commn)

Length	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
10-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	-	0	0	0
15	0	0	0	25	9	5	34	24	4	18	5	20	69	8	3	0	1	2	1	0	2	0	0	0	0
16	0	5	12	78	15	85	23	11	4	33	56	108	1455	39	5	0	2	6	4	4	1	0	0	0	0
17	0	0	1	60	47	64	173	24	2	37	82	102	561	28	10	1	4	9	6	5	3	-	0	0	3
18	3	1	10	42	41	175	356	71	8	41	50	205	504	38	8	1	1	10	7	11	5	4	0	1	1
19	24	7	1	70	60	169	786	72	5	45	65	307	309	30	10	1	1	4	3	11	7	9	0	3	4
20	75	30	26	272	121	400	1378	189	30	22	50	313	227	46	14	3	7	5	4	14	10	28	0	1	6
21	157	73	78	429	330	790	2306	518	75	45	113	278	461	34	20	3	11	14	10	7	10	46	0	0	7
22	170	87	103	372	365	843	3988	1700	569	79	154	336	264	58	17	4	11	19	13	4	13	37	0	1	4
23	228	272	258	395	786	1232	5177	4603	1815	433	349	438	475	105	21	5	11	26	18	10	18	35	0	2	3
24	981	434	546	437	1354	2300	5919	10401	6025	1530	957	902	487	215	16	10	21	30	21	16	13	35	0	3	7
25	2987	1212	769	810	1620	3337	4300	15548	13354	5457	2220	1965	923	461	21	11	16	60	42	29	17	32	0	6	10
26	6335	2301	1338	1394	1600	4632	3519	14592	19007	15571	6771	6198	2684	949	24	15	25	50	35	31	22	80	0	5	27
27	10618	6007	2480	2286	1760	5415	3505	8669	19823	24636	15194	14648	6809	2001	37	21	47	60	42	37	42	103	0	8	29
28	10985	10642	5281	3829	2646	5341	3770	4675	13187	25363	22146	22907	15034	3773	51	27	69	66	47	58	45	128	1	16	36
29	7815	12281	8692	5891	3651	5150	4037	3825	7784	18290	20968	25930	19200	6063	86	74	102	50	35	38	40	106	2	18	55
30	4720	10130	9495	9479	5878	6821	4835	4659	6613	11038	16180	21442	17271	6834	192	129	167	69	49	56	63	144	1	27	52
31	2534	6544	8512	9733	6747	7889	6239	6345	6501	8279	11062	14932	11961	5340	216	196	225	132	93	94	69	121	2	34	51
32	2214	3939	6083	8760	7413	8111	7989	7396	7119	7951	8619	10861	7465	3946	282	283	258	185	130	111	88	102	4	36	60
33	2007	2778	3635	6919	6577	7587	8202	8843	7559	6839	7437	9490	5367	2901	252	304	270	227	160	140	122	92	10	37	60
34	1553	2045	2325	5168	5137	5996	8427	8570	6990	7107	7268	9020	4971	2314	244	221	265	256	180	180	139	99	13	48	74
35	950	1620	1803	3842	3473	4298	6745	7105	5347	5561	5970	7577	4405	2248	171	220	211	218	153	184	164	68	9	56	82
36	1154	1392	1437	3176	2524	3129	4972	4947	3997	4212	4080	6475	3481	1804	135	163	198	202	142	160	155	71	17	57	68
37	894	1286	1330	2531	1998	2182	3622	3794	2921	3020	3277	5148	3301	1070	93	103	114	141	100	136	145	57	19	53	54
38	743	632	910	2134	1783	1859	2974	2754	2053	2087	2367	3942	2529	814	70	73	75	100	71	80	114	42	15	47	67
39	640	445	580	1723	1057	1475	2051	2014	1465	1627	1746	3015	2124	634	48	49	36	67	47	63	86	25	15	39	46
40	622	338	403	1119	822	815	1489	1420	1004	988	1123	1977	1361	486	35	26	30	54	38	40	58	19	8	28	37
41	524	239	212	535	445	537	879	896	769	518	708	1334	810	173	20	25	9	39	27	18	33	11	6	23	27
42	120	133	100	367	353	356	663	561	439	275	390	951	551	118	11	9	3	18	12	10	22	4	4	14	12
43	25	81	83	114	219	198	323	363	271	200	224	534	295	45	5	13	3	14	10	8	13	3	5	7	7
44	2	84	46	66	188	127	168	249	119	100	108	320	155	29	2	8	2	9	6	8	10	2	1	7	8
45	8	72	25	59	58	44	77	91	47	38	73	128	122	12	1	5	1	3	2	1	3	3	2	7	3
46	0	54	37	28	23	53	47	43	27	15	33	76	49	8	0	3	1	1	1	2	2	1	1	2	3
47	8	89	51	12	20	26	28	26	9	15	12	29	13	5	0	1	0	2	1	2	2	1	1	5	1
48	1	81	31	7	11	7	23	26	1	2	2	15	3	0	0	2	1	1	1	1	1	0	0	2	1
49	1	67	43	10	16	4	1	6	5	0	0	0	1	2	0	1	0	1	1	0	0	0	0	2	0
50	0	95	13	14	14	2	6	1	0	16	0	6	8	0	0	1	3	0	0	0	0	0	0	0	1
51	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
52	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
53	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
54	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
55+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table A3b: Commercial catch-at-length (numbers) for Atlantic redfish (all species combined) for Unit 2 (Don Power, pers. commn)

Length	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2009
$10-$	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	3	0	0
15	6	0	0	0	0	0	0	0	2	0	0
16	13	0	0	0	0	0	1	0	2	0	1
17	45	0	0	8	2	1	3	0	6	0	10
18	148	0	0	0	0	4	5	2	10	15	24
19	389	0	0	17	4	6	13	4	12	6	39
20	458	1	0	0	3	5	47	15	31	0	39
21	521	2	111	18	2	3	41	43	69	31	51
22	1104	1	259	17	14	9	101	65	100	52	22
23	1489	3	444	38	25	17	136	98	142	119	55
24	1123	5	628	49	50	14	356	129	232	156	141
25	1279	3	924	157	97	15	521	178	342	187	243
26	1708	3	483	273	132	17	745	236	445	264	519
27	1966	55	667	346	156	31	640	344	530	330	660
28	2592	323	739	487	226	78	643	343	531	267	923
29	3191	1266	1059	1059	593	212	565	298	543	302	944
30	3364	2321	1366	1793	1127	425	576	454	636	376	1064
31	3434	2756	1435	2471	1918	731	751	529	787	473	1001
32	2746	2817	1995	2886	2455	1138	914	632	1098	882	1082
33	1733	2106	1779	2562	2234	1244	1063	730	1299	1168	1007
34	1282	1421	1780	1958	2113	1100	998	657	1414	1405	1080
35	842	1199	1527	1599	1414	851	879	501	1257	1330	813
36	649	855	1063	1036	924	592	704	475	1053	1184	726
37	410	676	852	831	619	359	467	328	842	888	576
38	281	515	543	672	467	306	296	196	499	561	401
39	212	428	652	462	384	219	214	130	300	405	395
40	198	320	268	342	252	129	155	94	170	116	170
41	106	214	324	198	179	75	90	55	106	93	108
42	66	141	131	107	93	53	94	51	83	33	30
43	41	90	106	73	63	24	41	40	79	22	16
44	34	41	82	32	38	18	30	31	58	9	6
45	18	25	38	16	20	3	23	26	55	5	2
46	13	6	35	7	6	4	11	18	39	6	4
47	8	8	0	3	1	1	8	19	34	2	0
48	0	2	1	2	0	0	0	8	23	0	1
49	0	0	1	0	0	0	5	4	14	0	0
50	7	0	0	0	0	0	5	2	14	0	1
51	0	0	0	1	0	0	2	1	6	0	0
52	0	0	0	0	0	0	1	1	10	0	0
53	1	0	0	0	0	0	1	0	5	0	0
54	0	0	0	0	0	0	0	1	4	0	0
55	0	0	0	0	0	0	8	0	4	0	0
	0	0	0	0							

Table A3c: Commercial catch-at-length (in thousands) for Atlantic redfish (assumed to be all S. fasciatus) for Unit 3 (Peter Comeau, pers. commn)

Length	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
$10-$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	2	0	0	0	0	0	0	0	0	3	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	30	4	0	0	0	0	0	0	0	2	0	0	5	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	39	19	57	10	0	0	0	0	0	0	0	5	21	5	0	0	0	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	9	50	78	24	0	0	2	4	0	3	0	12	30	11	11	5	0	24
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	27	0	0	61	0	18	111	146	49	10	15	9	2	0	19	2	14	69	22	12	9	3	88
17	0	0	18	144	0	0	0	0	0	0	0	0	0	0	0	10	11	18	2	23	0	245	0	63	314	197	74	13	27	3	14	0	36	0	20	134	97	42	33	42	190
18	0	25	0	96	0	0	0	0	0	0	0	0	2	0	0	13	62	6	0	75	33	294	0	69	501	261	97	72	147	51	61	0	117	47	20	235	260	91	74	138	777
19	24	0	87	776	0	0	17	0	0	15	8	31	18	7	5	26	150	135	85	72	68	453	0	304	565	381	173	176	204	151	277	1	270	98	51	176	259	249	291	543	2537
20	50	0	703	2147	91	41	17	87	0	46	23	86	104	23	9	114	232	221	89	244	71	563	0	379	60	655	275	654	303	519	705	3	814	304	205	166	41	374	504	1030	198
21	386	39	1213	2278	667	53	94	211	25	60	35	165	117	53	35	123	87	663	73	478	165	1037	6	289	703	638	426	635	630	588	813	3	1229	523	354	244	233	37	754	1108	5508
22	549	151	2289	6714	2911	383	583	414	48	30	106	453	76	241	103	102	419	898	396	1014	216	508	19	874	942	775	696	1335	934	1144	1223	5	2061	1162	712	547	320	481	787	1054	4443
23	734	623	2286	7013	3716	1398	2106	690	112	147	123	560	163	228	161	248	473	1123	456	1202	534	575	19	696	1015	1071	868	1792	1182	1105	1367	5	1696	1065	601	873	478	656	1152	1081	2870
24	1011	109	174	6676	4582	2770	2357	1613	315	224	226	74	495	633	366	672	625	1387	530	1013	855	357		1295	1460	1256	1129	198	177	1641	1651	6	2400	1146	815	1156	52	772	1133	118	1686
25	890	1705	1513	5927	4828	3499	3238	1233	475	576	363	815	994	956	767	1624	871	1897	768	1174	1176	418	6	1277	1634	1736	1771	1737	1673	1622	1584	6	2141	1263	1001	1183	660	809	1269	1156	1087
26	736	1699	1319	4768	4984	4121	2679	1661	750	838	435	1266	1430	1454	1266	1876	1331	2144	1077	1288	973	416	35	1115	1449	1842	2143	1891	1787	1578	1682	5	1845	1096	1015	1138	678	821	1072	1074	737
27	876	1883	1094	5328	6449	3540	2378	1619	812	803	733	950	1739	1575	1462	2263	1305	2027	1012	1110	1167	451	71	1119	1418	1646	2009	1544	1736	1285	1528	4	1413	933	727	1221	720	75	1002	1236	61
28	1182	264	4	4038	3193	4357	1500	1282	534	867	4	1162	130	427	1722	1783	1201	1526	670	28	529	413	189	127	120	363	175	131	126	107	990	3	95	520	56	118	758	946	992	1138	538
29	1128	2764	682	3056	2520	2745	114	972	590	1190	0	1143	985	375	103	782	28	1476	653	492	310	353	203	1298	1106	20	545	119	116	886	1002	2	77	443	44	87	633	710	944	1017	448
30	1258	2006	486	2650	2854	1940	987	855	620	873	783	1746	1000	1163	1229	570	140	1471	809	298	181	272	200	960	846	850	894	1106	1022	857	982	2	782	327	257	657	508	63	626	887	341
31	1425	2561	392	1927	1493	1707	1255	858	486	482	883	710	1078	953	1222	1116	869	953	396	403	226	168	190	678	498	463	447	556	594	424	464	1	424	195	134	298	463	531	455	693	315
32	1681	2457	538	1848	1299	1111	364	443	426	422	671	821	862	874	1119	882	752	842	555	326	242	113	241	638	467	448	319	528	533	295	397	1	291	172	125	169	356	426	416	532	371
33	1443	2620	511	1539	1350	1322	388	405	323	170	436	289	511	501	720	616	514	449	473	268	158	176	302	670	278	273	200	428	446	291	259	0	189	125	68	72	258	261	284	362	237
34	1835	3259	519	835	919	427	358	261	258	61	361	239	141	328	408	354	262	247	391	150	83	178	270	387	248	158	128	296	301	208	214	0	96	97	42	38	199	95	152	232	184
35	1732	2298	304	431	600	153	134	242	202	47	231	65	76	161	117	182	152	163	273	40	24	72	222	120	167	107	78	207	253	136	144	0	58	65	28	27	122	77	72	129	82
36	1351	2064	292	409	398	76	139	198	282	29	204	8	95	102	54	29	104	141	121	11	22	66	189	103	108	83	27	203	131	121	134	0	49	67	17	24	104	31	43	71	42
37	1050	1675	156	275	259	53	165	35	236	12	163	6	28	90	23	6	123	64	92	8	6	14	176	153	137	73	24	190	126	105	114	0	26	56	21	5	47	20	13	23	27
38	1090	1383	96	214	135	0	161	17	158	0	183	7	22	45	18	2	260	4	110	7	5	13	180	108	76	63	18	134	89	70	71	0	16	56	14	4	19	2	9	22	23
39	959	1208	5	40	110	0	93	0	141	1	93	4	5	16	10	,	169	9	109	3	2	0	285	79	47	39	10	88	80	67	65	-	12	44	8	4	18	5	7	19	9
40	898	1599	55	105	18	0	66	0	17	0	100	2	4	6	5	0	222	0	130	4	0	0	349	24	46	40	7	112	59	65	51	0	9	35	6	2	3	2	6	14	4
41	890	1512	77	0	18	0	36	0	145	0	34	0	1	2	2	0	143	0	67	1	0	0	163	0	35	13	3	60	31	38	31	0	7	22	5	1	0	0	1	8	2
42	806	1021	63	0	0	0	4	0	21	0	7	0	1	1	0	-	245	0	40	2	0	0	84	0	31	11	3	70	28	26	33	0	8	24		2	3	1	1	6	0
43	322	732	18	0	0	0	0	0	60	0	22	0	0	3	0	0	116	0	22	1	0	0	33	1	33	5	2	73	21	19	16	0	3	18	3	1	1	0	0		1
44	194	466	7	0	0	0	0	0	39	0	11	0	0	1	0	0	193	0	16	0	0	0	3	0	23	2	0	58	24	14	17	0	1	14	2	1	0	0	0	1	0
45	101	60	4	0	0	0	0	0	49	0	25	0	0	0	0	-	205	0	10	0	0	0	0	0	5	2	0	50	17	10	4	0	1	12	1	1	2	0	0	3	0
46	44	119	0	0	0	-	0	0	23	0	7			0	0	0	103	0	14	0	0	0	0	0	15	1	0	24	17	7		0	0	6	0	1	0	0	0	1	0
47	0	0	0	0	0	0	0	0	11	0	11	0	0	0	0	0	90	0	12	0	0	0	0	0	7	0	0	16	7	1	0	0	0	4	0	0	0	0	0	0	0
48	11	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	13	0	5	0	0		0	0	0	0	0	5	3		2	0	0	1	0	0	0	0	0	0	0
49	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	0		0	0	5	3	0	1	0	0	1	0	0	0	0	0	0	0
50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1			0	0	0	0	0	0	0	0	0
51	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
52	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
53	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
54	0		0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0	0	0	0	0
55+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table A4a: Survey catch-at-length (numbers) for S. mentella for Unit 1 and Unit 2 (Daniel Duplisea, pers. commn)

Table A4b: Survey catch-at-length (numbers) for S. fasciatus for Unit 1 and Unit 2 (Daniel Duplisea, pers. commn)

	Unit 1																Unit 2										
Length	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	07	2008	2009	2010	2000	2001	2003	205	2007	2009
1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.013	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5	0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.017	0.132	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6	0.020	${ }^{0.033}$	${ }^{0.061}$	0.000	0.000	0.017	0.019	0.000	0.219	0.007	0.002	0.000	0.000	0.000	0.028	0.009	0.000	0.310	0.036	0.014	0.000	${ }^{0} .000$	0.000	0.000	0.187	0.000	0.000
7	4.208	0.576	0.600	0.075	0.000	0.275	0.360	0.468	3.187	0.053	0.313	0.282	0.010	0.027	0.174	0.735	0.010	0.125	0.479	0.745	0.192	0.060	0.000	0.010	3.499	0.152	0.080
	119.052	4.755	0.668	0.205	0.018	0.952	1.093	0.855	12.224	0.279	3.789	1.488	0.038	0.412	0.395	126.070	0.325	4.052	1.702	5.668	1.338	0.071	0.290	0.391	61.827	0.583	0.429
	289.666	9.383	1.123	0.467	0.880	2.150	1.650	0.729	8.141	1.212	7.885	6.190	0.328	0.375	0.674	552.076	1.819	42.487	2.351	10.414	2.482	0.072	1.470	0.334	140.467	0.911	0.767
10	63.496	66.314	1.364	0.354	0.294	0.781	1.085	1.174	3.517	2.777	4.015	11.232	1.152	0.533	0.900	192.448	9.015	11.445	3.149	6.285	2.596	0.331	6.210	0.169	74.066	1.102	0.746
11	1.562	206.499	6.053	0.320	0.380	0.276	0.808	2.295	1.831	5.628	1.740	4.151	1.990	1.009	0.549	11.096	24.348	0.766	6.376	0.846	3.757	0.820	${ }^{6.069}$	0.232	12.727	0.435	0.788
12	1.37	355.845	21.390	0.518	0.912	0.435	0.796	2.851	1.701	7.587	3.656	1.563	3.618	2.620	1.198	0.933	119.218	3.765	28.003	1.256	9.753	0.839	1.842	0.997	6.901	9.796	1.784
13	2.370	179.842	41.364	0.955	0.998	0.529	0.855	2.277	2.011	6.309	6.902	2.235	6.596	4.293	1.737	1.055	176.801	29.879	16.814	2.390	10.983	0.985	2.900	1.598	5.992	59.957	4.698
14	3.969	20.317	42.606	2.461	1.192	0.589	0.526	1.549	2.186	4.678	10.968	2.063	5.311	8.878	2.322	2.119	46.190	81.378	6.749	3.625	5.390	1.714	3.256	2.563	7.096	182.403	9.255
15	7.191	7.285	19.065	5.797	2.055	0.766	0.517	0.958	2.961	3.155	10.896	1.818	1.586	10.177	3.291	1.777	7.887	130.437	5.685	5.789	2.875	3.055	4.895	3.844	6.889	240.143	14.248
16	9.977	7.241	1.347	8.428	2.467	0.698	0.427	0.616	2.381	2.369	4.770	2.364	1.000	8.084	3.315	1.793	1.612	70.727	10.320	6.111	2.951	3.437	6.823	4.002	10.074	120.990	16.145
17	14.364	7.989	1.262	6.582	2.539	0.927	0.462	0.450	1.327	1.755	3.346	2.148	1.181	4.784	3.530	1.420	0.552	19.580	10.806	2572	2.959	5.827	10.228	4.435	22.083	37.332	46.546
18	11112	6565	1778	3453	$2 \mathrm{n})$	ก70	ก 460	ก 474	1 ก99	1157	${ }^{2} 10$	1475	1051	2318	3640	1875	1150	3756	9088	3188	3149	776	1) 458	5130	37597	15961	84143
19	3.876	4.305	1.217	0.856	0.893	0.552	0.694	0.469	0.846	0.778	1.246	1.011	0.840	1.465	2.174	2.044	1.229	1.907	3.692	3.360	2.487	9.533	11.138	6.331	50.166	10.533	83.373
20	1.582	2.148	1.120	0.600	0.440	0.500	0.560	0.450	1.636	0.401	1.009	0.694	0.879	1.103	1.263	2.018	1.348	1.752	1.369	2.338	2.149	9.798	10.626	8.022	50.734	13.346	59.069
21	1.222	1.963	1.313	0.813	0.185	0.367	0.630	0.366	1.406	0.346	0.390	0.559	0.697	0.964	0.596	1.365	1.422	2.194	0.635	1.716	1.516	8.069	10.094	10.871	37.204	10.305	29.014
22	1.524	1.307	1.810	2.339	0.219	0.356	0.376	0.352	4.929	0.328	0.582	0.582	0.685	1.039	0.563	1.006	1.468	1.044	0.521	1.205	1.321	6.802	7.924	13.986	27.164	11.562	11.604
23	1.753	1.631	3.170	4.818	0.389	0.264	0.239	0.251	3.871	0.447	0.310	0.336	0.407	0.965	0.612	0.594	2.151	0.776	0.544	0.664	0.862	6.001	10.150	10.622	19.816	12.633	5.769
24	3.181	2.298	4.075	8.224	0.603	0.250	0.185	0.347	5.376	0.381	0.440	0.333	0.350	1.454	0.781	0.453	1.629	0.802	0.823	0.448	0.418	7.882	25.295	9.675	18.605	12.181	15.870
25	6.559	3.464	4.070	7.765	0.764	0.346	0.130	0.264	3.136	0.336	0.321	0.307	0.556	1.779	0.813	0.453	2.209	0.480	0.915	0.536	0.374	9.976	37.601	8.813	16.561	16.012	20.152
26	13.683	5.013	5.560	7.992	1.508	0.299	0.183	0.284	2.974	0.374	0.221	0.376	0.286	2.750	0.930	0.658	2.851	0.287	1.183	0.746	0.660	11.383	65.737	10.033	15.436	19.007	17.919
27	22.599	9.103	9.703	9.571	2.167	0.237	0.152	0.343	2.477	0.487	0.278	0.294	0.500	3.749	0.984	0.764	2.432	0.507	1.244	0.675	0.739	10.200	47.704	8.738	12.501	17.462	16.557
28	28.886	13.078	14.215	7.937	1.545	0.233	0.159	0.703	1.298	0.424	0.213	0.202	0.383	5.810	0.628	0.630	1.956	0.431	1.260	0.626	0.807	8.029	32.294	7.496	8.120	13.448	14.291
29	22.941	15.507	14.714	5.745	2.436	0.345	0.406	0.930	2.401	0.437	0.346	0.295	0.398	7.156	0.796	0.582	1.638	0.451	1.489	0.773	0.915	7.236	23.948	7.172	4.922	7.557	10.712
30	13.174	12.140	12.670	6.036	3.072	0.300	0.492	1.216	2.331	0.421	0.473	0.314	0.441	5.158	0.565	0.549	1.14	0.341	2.175	0.610	0.387	7.494	26.153	6.663	5.574	8.138	9.081
31	7.520	8.361	9.134	4.958	2.319	0.348	0.404	1.464	1.920	0.276	0.446	0.665	0.370	1.908	0.517	0.558	0.856	0.265	1.915	0.624	0.496	7.481	10.925	5.396	4.168	6.666	8.268
32	4.622	5.607	8.374	2.506	2.708	0.258	0.380	1.212	0.572	0.307	0.510	0.826	0.463	2.306	0.219	0.573	0.731	0.255	2.491	0.885	0.397	8.830	9.416	4.748	5.852	7.385	7.008
33	3.425	3.643	4.935	1.636	2.397	0.195	0.310	1.084	0.666	0.358	0.661	0.885	0.258	0.802	0.156	0.511	0.538	0.335	2.395	0.386	0.214	7.006	3.172	2.908	5.949	7.342	5.370
34	4.006	2.716	3.766	0.963	1.866	0.230	0.196	0.887	0.484	0.373	0.505	0.695	0.311	0.685	0.051	0.450	0.439	0.351	1.154	0.319	0.379	7.938	2.791	3.133	6.746	6.537	5.569
35	3.331	2.503	3.208	0.620	1.478	0.280	0.220	0.821	0.808	0.313	0.465	0.700	0.342	0.459	0.105	0.509	0.284	0.381	1.572	0.204	0.578	8.769	1.635	2.809	6.516	4.566	5.133
36	3.614	2.241	1.655	0.342	1.425	0.206	0.175	0.418	0.291	0.883	0.524	0.476	0.311	0.522	0.032	0.284	0.330	0.424	1.044	0.198	0.507	5.125	1.509	2.184	5.120	3.688	4.370
37	2.555	1.655	2.130	0.312	1.180	0.172	0.137	0.198	0.228	0.290	0.363	0.591	0.202	0.469	0.091	0.289	0.341	0.318	0.748	0.238	0.436	5.339	1.077	1.522	4.309	3.297	4.452
38	2.357	1.749	0.907	0.162	1.056	0.200	0.134	0.110	0.196	0.092	0.351	0.310	0.132	0.677	0.047	0.281	0.279	0.281	0.497	0.145	0.197	3.786	0.376	1.311	3.195	2.842	3.351
39	1.990	1.188	1.056	0.072	0.771	0.097	0.097	0.124	0.160	0.101	0.182	0.165	${ }^{0.145}$	${ }^{0.527}$	0.027	0.143	0.159	0.262	0.429	0.157	0.179	2.300	0.244	0.943	1.578	${ }_{1.846}^{2.815}$	2.351
40	1.165	0.970	0.675	0.054	0.414	0.100	0.074	0.121	0.091	0.079	0.152	0.158	0.055	0.409	0.023	0.178	0.169	0.148	0.417	0.135	0.141	1.961	0.242	0.640	1.219	1.615	1.535
41	1.051	0.717	0.278	0.041	0.183	0.098	0.042	0.029	0.054	0.049	0.116	0.114	0.057	0.151	0.036	0.137	0.112	0.103	0.250	0.091	0.226	0.867	0.122	0.383	0.603	0.715	0.805
42	0.500	0.381	0.180	0.041	0.084	0.065	0.027	0.035	0.041	0.031	0.067	0.045	0.025	0.113	0.067	0.064	0.886	0.074	0.110	0.061	0.091	1.301	0.089	0.278	0.581	0.619	0.427
43	0.322	0.224	0.105	0.008	0.096	0.018	0.020	0.045	0.029	0.021	0.056	0.048	0.006	0.026	0.028	0.032	0.052	0.046	0.108	0.054	0.056	1.047	${ }^{0.037}$	0.162	0.223	0.302	0.268
44	0.242	0.190	0.055	0.016	0.038	0.029	0.012	0.017	0.027	0.013	0.037	0.005	0.007	0.033	0.006	0.082	0.016	0.021	0.037	0.019	0.027	0.790	0.038	0.135	0.154	0.187	0.168
45	0.095	0.116	0.021	0.001	0.017	0.007	0.002	0.014	0.013	0.022	0.018	0.029	0.008	0.024	0.017	0.037	0.012	0.121	0.020	0.012	0.012	0.357	0.005	0.107	0.092	0.083	0.122
46	0.037	0.054	0.029	0.000	0.013	0.008	0.000	0.002	0.000	0.005	0.005	0.004	0.000	0.004	0.004	0.017	${ }^{0.050}$	0.019	0.024	0.008	0.012	0.072	0.009	0.059	0.015	0.075	0.038
47	0.011	0.026	0.012	0.000	0.004	0.002	0.008	0.000	0.007	0.001	0.006	0.005	0.000	0.000	0.002	0.049	0.000	0.000	0.003	0.000	0.014	0.073	0.006	0.042	0.032	0.022	0.041
48	0.006	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.001	0.002	0.002	0.000	0.027	0.002	0.139	0.016	0.003	0.000	0.002	0.011	0.141	0.010	0.043	0.021	0.008	0.07
49	0.007	0.020	0.001	0.000	0.007	0.000	0.000	0.013	0.008	0.000	0.000	0.000	0.000	0.000	0.002	0.045	0.000	0.000	0.001	0.005	0.009	${ }_{0} 0.033$	0.009	0.035	0.007	0.003	0.006
50	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.002	0.049	0.000	0.007	0.066	0.000	0.000	0.000	0.007	0.032	0.000	0.000	0.011
51	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.015	0.021	0.000	0.010	0.012
52	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.039	0.000	0.000	0.000	0.000	0.000	0.024	0.002	0.016	0.000	0.000	0.000
53	0.015	0.000	0.000	0.000	0.007	0.000	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.013	0.012	0.000	0.000	0.000
54	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.019	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.013	0.000	0.000	0.000
55	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.000	0.000	0.00
56	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.010	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.00
57	0.000	0.015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
58	0.000	0.000	000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
59	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000	0.000	0.000	0.000	0.00	0.00	0.000	0.000	0.000	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00	0.0	0.00

Table A4c: Survey catch-at-length (numbers) for S. fasciatus for Unit 2J3K (Don Power, pers. commn)

Length	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	${ }_{0} 0.00$	0.00	0.00	0.00	0.00	0.00	0.00	${ }_{0} 0.00$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	25.34	0.00	210.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	,	㖪	000	0.00	194.28	. 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	112.05	100.22	1245.33	266.01	323.74	2558.87	6864.06	2490.19	508.53	1615.48	277.13	1501.06	2539.29	218.01	844.33
6	1774.62	0.00	0.00	55.60	504.51	0.00	0.00	0.00	0.00	0.00	355.62	0.00	0.00	0.00	0.00	0.00	170.00	1131.86	1636.37	1437.04	2925.13	2480.77	7882.50	28575.58	8922.36	5775.38	19639.96	2139.41	9185.93	14951.10	1266.79	2609.71
	19550.79	0.00	0.00	77.80	1909.77	0.00	0.00	927.54	0.00	62.40	328.66	209.64	496.06	75.25	0.00	0.00	0.00	620.43	3581.87	119.79	1040.57	26.14	4872.74	5230.16	2229.49	8506.79	5620.79	2112.18	8727.54	22330.57	3930.23	2475.48
	65920.15	1270.11	1897.57	87.20	89.40	592.05	515.99	345.93	465.59	0.00	994.23	0.00	77.35	275.21	225.40	0.00	0.00	2058.17	391.12	911.38	181.09	521.10	2488.84	5643.68	3179.77	16112.17	4707.03	4483.10	6076.36	26896.58	16484.14	7054.09
	57398.59	3147.62	3624.07	392.64	841.87	1465.42	1955.60	432.33	674.99	560.88	3394.86	51.80	82.40	2613.47	1721.92	283.36	910.23	2014.13	9803.61	3672.04	8651.37	1967.68	688.90	17215.21	12756.04	37634.45	18783.80	13070.48	17973.30	49593.35	32816.78	1673.63
10	61805.98	2012.90	6448.82	77.80	1067.38	2329.31	366.50	893.07	1541.18	966.02	6048.06	1056.24	336.44	3242.18	1042.81	0.00	147.68	940.37	8833.16	11727.61	14521.06	5239.95	10870.32	31671.50	23262.47	45771.02	35368.40	36010.41	15484.54	79595.19	63769.51	20054.99
11	136788.05	2105.70	3439.42	315.69	374.40	634.75	5604.51	519.10	1025.95	439.68	2058.82	2053.98	295.35	490.36	1296.55	219.79	24.20	398.07	4951.34	7621.65	5601.56	3877.73	301.94	18072.88	15499.41	17546.36	45013.63	21370.28	9649.03	40424.79	79687.31	17487.46
12	228508.88	11072.59	1547.92	2071.03	810.82	273.61	8525.13	1737.04	1266.19	1135.52	1081.97	2401.27	257.45	240.33	1159.98	400.46	108.54	1006.96	5096.92	1121.68	1815.21	2549.27	988.54	4039.80	9209.60	6659.68	44081.30	12585.65	13588.85	12840.33	75789.66	23514.88
13	200965.22	16074.03	2785.30	2228.13	1331.58	548.69	7643.75	2180.92	2674.01	342.89	852.81	2518.40	542.50	622.23	377.97	573.43	10.69	340..55	4766.77	2265.15	4456.27	5136.04	1587.13	5319.07	7476.42	0206.35	47384.39	17174.03	20169.04	13806.62	31866.36	35987.24
14	101817.36	25715.47	4972.78	2304.09	1147.24	220.08	298.95	3885.38	2678.21	948.52	706.36	2263.82	507.38	182.90	747.40	995.17	270.23	2869.78	2426.38	2166.84	9495.53	8291.86	2857.54	4656.89	7384.78	10325.75	38273.09	32853.83	24093.39	13417.05	22586.43	49593.58
15	67769.53	43986.59	8740.02	681.74	1686.15	214.11	833.57	3435.72	3741.67	677.01	1298.89	1317.93	1167.48	1151.26	383.35	351.39	118.54	980.50	3094.76	1527.72	5469.81	4709.39	2940.05	2291.35	5025.92	${ }^{6467.58}$	14088.43	35045.10	21188.06	12885.65	10979.71	50697.82
16	128572.12	55322.48	12116.88	1478.36	1590.69	1155.30	1283.48	1717.76	5034.31	1178.06	746.96	503.61	1598.23	560.86	268.95	51.83	240.31	1148.92	2098.79	1126.34	1848.07	1959.18	2651.39	749.47	1636.67	${ }^{3801.32}$	8787.09	28363.31	11723.18	11043.17	677.08	16124.49
17	239556.28	34071.71	33501.33	2180.23	2495.31	680.65	1157.65	438.85	5067.65	1485.21	1035.53	627.28	1331.24	1091.94	548.72	240.72	143.79	1128.63	2250.19	903.32	2247.59	2329.71	3207.10	1279.72	1314.01	2978.53	9600.27	22526.37	14113.17	16871.69	7708.38	9682.73
18	309602.27	22268.59	40642.18	4634.50	1948.55	1716.45	1796.59	760.08	3406.71	1651.53	1482.95	717.66	598.53	870.47	381.53	224.16	130.87	1576.17	1216.91	1021.31	2089.57	3258.09	2563.00	1988.25	661.65	2123.02	8415.75	17079.18	14596.88	20147.10	7388.51	5315.92
19	227611.34	27674.02	58829.33	8292.32	3273.70	1423.72	2641.51	727.36	1576.33	3186.67	1422.48	1089.11	263.05	821.20	328.50	244.98	21.50	1521.65	1193.67	1680.05	1253.72	2523.29	1966.16	1723.97	85.43	1296.24	7906.86	9966.59	9951.77	17985.00	8338.01	4887.32
20	67831.39	34919.48	33718.25	22174.03	7426.58	1897.30	3470.82	1424.96	969.82	2707.80	3362.52	1683.97	586.43	427.10	602.73	409.64	25.55	1225.40	1588.07	1503.73	770.53	1934.08	1427.16	1628.12	1147.41	388.60	4404.85	8495.48	7853.80	17522.48	10272.18	5615.09
21	39750.39	55659.14	18722.49	32265.58	15558.70	10217.97	4589.75	3407.88	1327.99	1249.60	5586.57	1972.76	1479.31	636.18	1071.88	280.74	69.84	1142.75	2008.14	903.18	1109.81	1567.50	1640.46	1388.81	1291.63	397.84	3589.38	6356.70	9567.24	19442.88	16041.11	10047.22
22	56507.23	51853.32	23116.14	62189.45	31501.95	81091.37	7065.42	4219.28	2114.46	1064.73	4134.31	2370.01	3093.51	456.56	86.92	170.37	128.94	594.34	2006.41	675.42	1368.53	1292.61	1157.07	${ }^{1413.76}$	1255.83	50.99	2469.75	4885.50	8243.11	16189.30	16397.03	13088.12
23	92256.55	34282.96	35627.56	89138.01	38319.82	377798.00	14940.02	4709.43	${ }^{3065.60}$	1099.94	3494.37	3350.54	4120.86	1001.49	302.16	479.91	64.19	307.26	1701.96	1039.28	1250.05	1267.27	668.73	1386.47	1003.51	582.70	1491.58	3639.33	9851.24	13201.98	14226.99	19162.80
24	147446.11	29109.99	40071.89	173097.43	42425.42	640295.84	24937.19	11733.97	3245.98	1683.46	3576.21	2825.04	5521.88	1613.16	284.24	211.39	161.70	148.18	1202.40	1153.27	1027.85	1155.69	621.62	1322.01	979.97	421.42	932.48	4006.27	8603.18	9450.64	12273.38	17765.01
25	159074.95	29250.76	64705.27	324161.30	38629.37	88940.23	31507.24	21363.08	6245.67	2203.70	3853.98	2130.17	3114.34	1243.83	180.33	101.04	120.41	72.33	581.52	868.84	957.43	717.36	421.10	1059.16	928.12	256.37	863.85	2885.14	7094.22	6851.61	9568.80	16231.34
26	173879.46	37892.59	61860.74	430785.56	47745.51	701325.10	32413.40	34386.18	12317.90	3311.14	6344.40	1912.87	4887.621	1475.70	282.10	295.74	91.23	144.68	257.59	712.78	684.50	714.68	410.84	682.80	499.22	290.05	721.61	3174.40	7228.03	472.08	6686.99	11562.88
27	112189.99	42270.16	59160.62	314686.60	46822.01	424583.19	30747.42	30341.80	15785.84	4965.34	6154.47	2631.52	5879.47	1403.82	112.73	79.47	137.65	104.87	442.23	410.94	433.73	644.59	212.11	348.66	423.62	159.51	663.53	3508.88	5136.31	3931.55	5408.76	11105.32
28	109428.95	38885.50	74301.65	197586.67	40756.49	361969.73	25726.66	31233.98	22663.45	6140.23	10440.59	3419.53	8318.08	1804.95	309.04	120.76	51.38	81.50	329.93	215.72	391.38	504.60	207.32	185.45	117.29	111.96	338.73	2257.54	4938.61	2438.28	3219.10	${ }^{638.86}$
29	81920.01	38726.72	75639.03	108606.27	27447.93	154624.61	23626.47	20124.58	2024.63	5652.74	11624.17	3822.75	9931.071	1898.86	140.05	45.22	107.96	110.10	74.00	140.09	503.20	324.81	120.27	80.25	108.27	95.28	336.81	1929.50	4229.67	1936.08	2117.56	${ }^{4364.26}$
30	73602.83	35061.39	79609.03	90855.30	17342.98	149560.91	20313.28	13033.42	14926.57	4884.68	16112.58	3786.33	10539.30	1623.69	94.18	113.62	201.89	10.59	214.12	90.31	741.40	202.17	53.48	89.20	67.09	52.30	197.38	1481.23	5447.21	1300.66	1023.09	3157.05
31	56252.62	34584.86	91408.09	113385.35	11554.87	70868.72	15725.58	10650.81	13599.17	3394.47	14334.24	2462.44	8063.03	945.13	59.70	36.84	53.15	60.60	74.23	84.26	699.40	150.24	74.48	105.21	34.62	75.77	91.55	2087.90	${ }^{3361.53}$	779.76	669.41	1915.62
32	53506.94	25464.20	83226.31	86853.87	9542.25	43819.68	12256.38	7763.48	974.52	2453.22	15642.03	2048.30	6366.28	823.17	16.69	22.67	2.48	35.98	281.74	25.18	275.66	37.89	54.28	85.98	33.68	15.99	37.72	1663.13	2162.97	593.73	563.69	2315.64
33	41315.07	17099.76	73736.75	72211.46	7519.42	21890.53	7825.59	6114.94	9335.97	2108.90	11818.82	2114.98	573.61	694.91	19.82	1.91	7.72	5.56	55.40	92.70	540.36	87.34	27.24	18.79	52.06	18.12	48.07	2491.07	1238.86	613.18	309.60	1012.04
34	30784.70	10645.88	59708.39	42131.34	4999.91	19368.50	5607.00	5105.14	5808.05	1614.14	7385.71	1731.53	4858.08	585.12	18.34	10.60	4.83	0.14	31.14	44.41	208.10	46.37	2.55	17.12	10.17	9.38	85.00	441.23	1498.87	531.37	442.09	609.69
35	27630.48	10552.09	55541.35	31353.02	4707.23	12817.13	3616.25	3012.28	3499.09	1264.22	6526.19	1149.57	4866.95	350.67	15.97	7.87	2.60	2.89	7.47	0.48	270.91	28.24	3.42	7.26	3.78	0.33	5.47	372.99	817.36	269.37	95.52	433.95
36	18083.51	9965.26	43065.29	27950.97	3922.37	9471.68	3241.61	2481.38	2402.87	722.20	4366.06	1136.74	3994.21	280.54	6.36	3.11	1.56	0.00	0.22	2.93	147.08	0.95	6.52	7.58	7.17	6.64	13.27	110.46	286.03	250.27	81.71	664.90
37	13829.90	9965.56	57799.37	23879.25	3938.74	10627.69	2502.53	1576.10	${ }^{1436.86}$	545.91	2299.66	818.39	2382.46	82.54	8.14	2.84	${ }^{8.46}$	0.05	1.05	12.70	135.88	1.18	0.08	2.92	0.23	6.37	48.77	115.68	627.77	117.15	5.73	208.83
38	14578.64	6875.11	44909.14	14644.98	3942.33	9943.98	2034.53	1408.72	2597.85	516.62	2145.44	640.43	1776.32	57.74	4.23	3.32	6.01	0.05	6.35	0.57	57.80	32.93	0.00	17.92	0.05	0.12	5.38	0.39	67.22	103.04	8.82	95.69
39	9736.88	4535.77	37248.58	6035.10	2620.00	8339.35	1708.89	1187.51	1607.55	292.93	2002.73	469.50	911.23	77.80	15.03	0.05	0.11	0.08	0.72	3.30	56.97	0.21	20.60	0.97	0.00	0.00	0.00	324.56	13.97	50.53	16.62	241.63
40	5166.41	2817.05	19644.92	483.58	1637.27	4036.46	${ }^{1154.43}$	691.27	1210.67	251.32	1537.32	352.97	584.11	26.74	1.43	0.04	1.31	0.00	0.10	0.88	61.04	6.85	27.64	10.04	3.78	0.07	0.24	0.35	13.86	19.79	6.00	0.00
41	3132.32	1552.97	11620.44	3728.95	653.50	1752.73	590.31	663.34	617.23	197.06	1196.06	246.23	424.73	24.74	0.11	0.80	0.03	0.00	0.00	1.05	0.00	0.07	0.00	0.00	0.00	0.00	0.16	0.40	2.58	6.99	1.33	44.48
42	3702.76	1947.68	5221.04	1236.15	494.57	1375.39	586.38	201.57	286.64	115.91	985.89	140.35	390.36	10.89	0.96	1.00	56.06	5.40	0.72	1.45	14.40	0.00	0.00	0.00	0.10	0.00	0.00	11.36	7.49	0.00	2.41	0.00
43	2411.51	1436.03	6721.60	713.28	330.09	1092.59	374.65	104.54	571.28	92.58	652.19	81.11	421.32	16.04	0.70	27.72	0.80	0.00	0.00	0.00	29.02	0.33	0.00	0.00	0.00	0.00	0.00	2.93	246.00	18.40	4.06	0.63
44	3382.76	1383.07	12347.68	${ }^{866.26}$	533.02	1255.73	266.57	188.26	${ }^{336.00}$	103.65	554.17	106.70	160.22	2.40	0.00	0.05	0.03	0.00	${ }^{0.00}$	0.00	0.05	0.00	0.00	${ }^{0.06}$	3.78	0.00	0.04	0.00	0.08	${ }^{28.20}$	1.32	
45	2171.46	1918.79	${ }^{11374.41}$	838.85	444.32	858.26	351.65	389.45	346.52	26.98	234.29	95.49	158.49	0.00	0.05	0.00	0.00	0.00	0.05	0.11	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	55.60	16.80	0.00	0.00
46	2250.65	1759.59	2753.48	980.75	340.95	549.70	319.30	208.26	278.51	17.00	103.06	66.21	89.72	2.40	0.72	0.00	0.14	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	11.40	0.00	1.53	0.00
47	1480.85	812.32	1458.77	874.31	263.92	1091.93	27.19	120.53	39.25	40.04	163.33	59.00	102.20	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	6.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.20	0.00	0.00
48	1315.06	482.40	2014.61	436.15	165.87	640.29	312.67	140.70	155.52	50.67	3.38	30.73	89.60	3.61	1.29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14.60	0.00
49	523.78	421.30	25.03	548.41	180.01	268.77	178.11	61.01	122.78	6.93	0.05	15.20	25.82	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.22	18.40	0.00	0.00
50	195.80	348.13	134.44	99.91	45.79	157.66	17.00	75.42	21.60	27.87	15.72	29.60	21.00	0.00	0.00	0.00	0.00	0.00	0.00	${ }^{0.00}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	18.40	0.00	0.00
51	106.38	243.26	231.27	34.20	41.65	99.19	10.20	33.20	3.30	4.60	6.30	15.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
52	25.51	97.40	85.38	4.50	0.00	22.20	31.43	27.28	14.22	0.00	0.00	14.40	6.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
53	0.00	0.00	79.18	34.20	37.25	22.86	10.60	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
54	0.00	10.00	0.00	0.00	0.00	5.00	0.00	0.00	0.00	0.00	0.00	10.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.00	0.00	0.00	0.00	0.00	0.00
55	0.00	0.00	0.00	29.20	0.00	10.45	19.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
58	0.00	0.00	0.00	${ }^{0.00}$	${ }^{0.00}$	${ }^{0.00}$	0.00	0.00	0.00	0.00	${ }^{0.00}$	0.00	0.00	0.00	0.00	0.00	${ }^{0.00}$	0.00	${ }^{0.00}$	0.00	0.00	0.00	${ }^{0.00}$	0.00	0.00	${ }^{0.00}$	0.00	${ }^{0.00}$	0.00	${ }^{0.00}$	0.00	0.00
5		0.00	0.00	0.00	0.00	7.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table A4d：Survey catch－at－length（numbers）for S．fasciatus for Unit 3 （Peter Comeau，pers．commn）

	－		－	－	。	－								。			－			!	－	10974			:	!	!	!		${ }^{22243}$	${ }^{\circ}$:				o	o				
	：	－	\bigcirc	－	－	：	\％		：	：	：		19932	13955	：	${ }_{6227}^{6207}$	6572			\％	：	${ }^{46578}$	2023	9376					${ }_{\substack{315 \\ 1600}}^{\substack{\text { cos }}}$	${ }_{\substack{20837 \\ 20359}}^{\substack{\text { a }}}$	${ }^{337294}$	64407	${ }_{\substack{3977 \\ 7616}}$	47075	40707	1119369	${ }_{\substack{40388 \\ 11795}}^{\substack{\text { a }}}$			${ }_{\substack{97836 \\ 126396}}^{\substack{\text { a }}}$	${ }^{17394}$
	\bigcirc	\bigcirc	${ }_{7505}$	\bigcirc	\bigcirc	○	\bigcirc		0	\bigcirc	。		${ }^{468875}$	0		0	${ }^{\circ}$	${ }^{23001}$				412	2036	${ }^{\text {sala }}$	${ }^{44332}$	6512	502	${ }^{3030}$	${ }^{12363}$	189	323631	4723	173888		1018892		3349		$1{ }^{165330}$	811	
	\bigcirc			${ }^{3959}$	－	\％	\bigcirc			－	－			1199																	${ }^{12239}$					16330	199815	${ }^{126335}$	${ }^{21735}$	573727	
，			${ }^{122342}$	19996	${ }_{11256}$	。	3992		${ }_{6024}$	675		61771	${ }_{\text {cosem }}^{598987}$	${ }^{338935}$		${ }_{8927} 28$	309595	${ }^{129880802}$	597402	44554	138033	905999	93068	${ }_{2549752}^{13}$	798655	${ }_{315607}$	109037	21824	${ }^{\text {966810 }}$	1205871	247999	127895	3152980	${ }_{\text {gesege }}$	${ }_{4698988}$	${ }_{5507335}$	${ }_{814593}$	229816	${ }^{\text {chesen }}$	142222	
10	${ }_{\text {scogs }}$	${ }^{73380}$	${ }^{410209}$	7859	${ }^{6023}$			${ }^{18327}$	48749	${ }^{73399}$	${ }^{42258}$		1738	1309990	${ }^{32900}$	${ }^{173008}$	${ }^{391128}$	${ }^{1008501}$	9072	182300	5739	4032	303881	1117997	2006		${ }^{\text {csise4a }}$	5080	${ }^{\text {csucose }}$		${ }^{120059}$		${ }^{27799}$	oesser	7311360				2838		
$\begin{aligned} & 11 \\ & 12 \end{aligned}$	70982	4591		4898	3322	7980		${ }^{\text {cope85 }}$		${ }_{\substack{27319}}^{2731}$	${ }^{42356}$				${ }_{11812266}$	${ }_{312472}^{3+173}$	759852			6，68	${ }_{7}^{7} 45376$		2477	${ }_{1552209}$	120692		529762	${ }_{42225} 4$	${ }_{\text {ckerat }}$	2114598	1146540	${ }^{2} 911588$	${ }_{8976}$			3077	${ }^{52706858}$	${ }^{3394898}$	${ }_{\text {chen }}^{\text {Le3939 }}$		
$\begin{aligned} & 12 \\ & { }_{13}^{12} \end{aligned}$	19996	${ }_{23735}$	37233	123338	183356	59297	5350	19836	133706	19005	1975		233000	6097		50973	${ }_{5} 54330$	515013	605875	970	1832		193340	1778306	\％83911	100299	8774	24536	137293			11385		2001997	3119936		377351	${ }^{39158}$			
		${ }^{115009}$	cisisi	（124513	S5s2519	${ }^{166963}$		${ }^{827}$	${ }_{\text {175094 }}$	${ }_{\substack{5313 \\ 78901}}$	${ }^{32235}$	${ }_{\substack{12172 \\ 7 \\ \hline 122}}$	${ }^{192521}$	${ }_{\text {803997 }}$	6713	${ }^{150811}$		$\substack{205688 \\ \text { Silacid }}$	169727	1009	lex		San	2394		162138	${ }_{\substack{200677 \\ \hline 278894}}$	（109350		23612	${ }^{2072222}$	¢6251	${ }_{\text {coses }}^{60537}$			（1012022	ciser	2702176 8353503		26575	
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	${ }^{13654}$	${ }^{2210358}$	555358	4	边	${ }^{3} 8$	${ }_{20585}^{505}$	${ }_{\substack{12088}}^{108}$	41389	${ }_{3}^{37019}$	3024	${ }_{64122}$			，780	200433		${ }_{\text {28251 }}$	${ }_{6973727}$	${ }^{2609353}$	107089 18		${ }^{\text {anc3a }}$	${ }^{1818519}$		${ }_{1}^{23885927}$	${ }^{238589}$			${ }^{151581855}$	3630229	1763987		${ }^{223653888}$	${ }_{\text {ctilios }}$				${ }_{\text {l }}^{12200634}$	${ }_{\text {4，}}^{409878013}$	
	9466	${ }^{113663836}$	2053214	100		535	${ }^{939992}$	${ }_{\text {lefer }}^{1073}$	${ }_{\substack{353}}^{352}$	，	156538	${ }^{436298}$	${ }^{688494}$	83	4 47217		78	$\xrightarrow{420098}$	${ }_{\substack{424193 \\ \\ 37020}}$	${ }_{2} 7729221$	490129	${ }^{1262930}$	22025	1575179		${ }^{2665519}$		206735		${ }^{33539350}$		${ }^{1337732}$	${ }^{1253370}$	${ }^{23685099}$	${ }^{3397136}$		3058	57632	cissis	1877489	
	2042685 2	27038	13393192	${ }^{3685163}$	${ }_{4288570}$	62295	489559	1397390	575754	1095466	1255380	23018	${ }^{2026558}$	60932	122383	229970	4261185	1029393	1221502	1817224	8243935	252622	1375452	2127248	278332	9683304						1979876	2145546	4248339	229377	554				221903	
																		223397	11988805		2064	${ }^{31028888}$	12835	2488859									25306	5924							
	5336	${ }_{412383}$	11244	3964	733512	5392013	7769937	15594639	94183	736182	2 259888	1933445	669934	258773	206312	67559	S6035	ana4as6	${ }_{3215726}$	11611868	1010121	1996629	1337226	6363519	475062	114363	90922					2675		18812							
																				378890			416	O24550																	
						6372354	194342			（123017	${ }^{13701288}$	${ }^{6465}$			106	${ }^{379249} 7$	2011	2481436	128881722	3812315	（930	cis							${ }_{7}^{799202}$										${ }^{185526}$	11776：	
		312736										${ }_{40233}$				\％o6s3						57315																			
	， 12390					1880739		299520	（133856	（38380		$\substack{759891 \\ 888711}$	（1094899		27ilabio	20419 52760			${ }^{214}$	3057830 30013	（200574	a	（27254 1	1909964	1511369	${ }_{11263}$	1577838		${ }^{5} 51193$	17932	7079	21598	${ }_{\substack{56022 \\ 85710}}$				${ }^{1177684}$	（03007	${ }^{3503310}$	${ }_{2}^{20358584}$	
													102333		1593978			1485011	00	335067	${ }_{605338}$																			20302	
	20142	11998			122338	3777599					115799	809236	15092022	2489996	S30139		这	（1）	Stabil	19279	${ }^{7333192}$	${ }^{22522}$	1766989813	1319320	9907272	587345	${ }^{2028} 2$	111	${ }^{1747299}$	7961	1309756		${ }^{3860718}$	${ }^{\text {a990936 }}$	${ }^{4284554}$	283275		${ }^{\text {ar8784 }}$	239877	${ }^{16478355}$	
	4242703	${ }_{4}^{415532}$	1027	Sastic		${ }_{\text {coser }}^{533697}$	${ }^{\text {cosers3 }}$	${ }_{50}^{19}$	1657320	${ }^{36772026}$	694940	3414056	Ifas7788 2	2695	887	${ }_{2380770}^{2124}$	${ }^{872825959}$	1677488	240	${ }^{3} 11926248$	${ }^{\text {coseng }}$	${ }^{32532016}$	${ }_{\text {ziossig }}$	（1040975	${ }_{3} 51232372$	${ }_{\text {cke }}$	${ }_{4}^{36393122}$		${ }_{165579}$	${ }_{3} 513888187$	${ }_{3}^{7682898}$	${ }_{7}^{4709318}$	${ }_{1224579}^{21293}$	${ }_{\text {2384081 }}^{2031}$	${ }^{3} 2782300$	1131016	1038422		${ }^{2127538200}$	${ }^{10980018}$	${ }_{4756527}$
	${ }_{2}^{21399}$	${ }_{\text {and }}^{\substack{3941422 \\ 349061}}$	${ }^{3199858}$	边				${ }_{2}$	288758			${ }_{1}^{1730545} 1$	${ }^{132435397}$	603259		${ }^{2} 10062491$	come	${ }^{\text {chenele }}$	381	${ }_{1}^{2303223}$	${ }_{2}^{247565014}$		609770			${ }^{3350338}{ }_{\text {20639 }}$		STs5988	${ }_{\substack{1033888 \\ 18170}}$	$\substack{201632 \\ 182514}$	${ }_{\substack{452938 \\ 4564}}^{4}$		6.6575 1205020	1805512	${ }_{\text {l }}^{1228948}$	3339931	720223	${ }_{\substack{112756 \\ 77152}}^{\substack{ \\ \\\hline}}$	${ }^{3974513}$	${ }_{\text {l }}^{4788989}$	
${ }_{35}^{33}$		233430	1109475	${ }_{\text {1／2，}}^{1 / 21200}$				1536432	160284	${ }^{2} 123383$	148357	$\substack{1339440 \\ 109386 \\ \hline}$	Hex	108065	421467	${ }_{\substack{1112454 \\ 143300}}$	2exises	958220	2065514	1080574	109938	$\substack{\text { sexnc } \\ \text { 372058 }}$	30334	${ }_{\substack{2 x 8 / 180 \\ 24123}}^{2}$	${ }_{\substack{18333 \\ 881612}}^{\substack{\text { che }}}$			${ }^{839354}$	$\xrightarrow[\substack{1 / 2322 \\ 99767}]{\substack{\text { a }}}$		${ }_{\substack{23932 \\ 40318}}^{2}$	$\substack{1 / 39218 \\ 83340}$		${ }_{\substack{133900 \\ 13929}}^{\substack{\text { a }}}$	$\substack{\text { zus343 } \\ \text { 4847 }}$			${ }_{\substack{43331 \\ 33195}}^{\text {a }}$	67730	${ }_{\substack{180135 \\ 2664}}^{196}$	9998
																				100437																					
	56220	42390	3299394	${ }^{832329}$	${ }^{1236}$	309	${ }^{1010752}$	${ }^{83325}$	${ }^{509279}$	${ }_{2}^{20,5234}$	151196	${ }^{1115236}$	${ }^{204575}$	${ }^{1212933}$	271	1579993	4724		${ }_{\substack{103023 \\ 39522}}$	${ }^{1212358}$	27449	${ }_{\substack { 50635 \\ \begin{subarray}{c}{\text { ceser }{ 5 0 6 3 5 \\ \begin{subarray} { c } { \text { ceser } } }\end{subarray}}$	${ }_{\substack{70976 \\ \text { caras }}}$	${ }_{\substack{1180156 \\ 88729}}$		（93206		－ 210657	${ }_{\substack{13752 \\ 77292}}^{109}$	${ }_{\substack{28322 \\ 71024}}$	${ }_{\substack{282366 \\ 81813}}^{\substack{\text { a }}}$	${ }_{\substack{165372 \\ 17279}}^{124}$	${ }^{625158}$	${ }_{\substack{6519 \\ 69206}}$	124198	${ }^{177769}$	107550	${ }^{131223}$			20079
$\begin{aligned} & 39 \\ & 40 \\ & { }_{40} \end{aligned}$	30235	${ }_{22831}^{2231}$	${ }_{39394}^{18294}$	2972	${ }^{1298903}$	2102	${ }_{68351}^{1851}$	${ }^{\text {639237 }}$	${ }_{611598}^{5657}$	${ }_{57127}$	9953	96834	${ }^{2} 829391$	${ }^{1251218}$	${ }^{262698}$	407154	692027	${ }_{11195}^{12095}$	${ }_{361156}$	841906	121588	${ }_{5} 508381$	${ }_{655311}$	61663	${ }^{291936}$	45604	2991	117974	13839	190881	${ }_{22151}^{2015}$	22161	217025	122321	${ }_{86779}$	${ }^{123127}$	1769	${ }^{28388}$			
${ }_{42}^{41}$	1212966	1688		15336	cien	5079	${ }_{25735}^{24827}$	${ }_{\substack{385366}}^{\text {24562 }}$	$\underbrace{\substack{\text { 1－}}}_{\substack{8735 \\ 10893}}$	${ }^{20263}$ 32193	${ }_{\text {ckind }}^{7282}$	${ }_{\substack{401551 \\ 36550}}^{2}$	265166 67785			${ }_{\substack{11084 \\ 4580}}^{1}$	${ }^{5162}$	${ }_{\substack{76151 \\ 3173}}$	${ }_{\text {185392 }}^{183}$	${ }_{\substack{377788 \\ 477988}}^{\substack{\text { a }}}$	${ }_{302382}^{24302}$	${ }_{\substack{18722 \\ 15022}}$	${ }_{\text {2 }}^{21915}$	38335 ${ }^{\circ}$	${ }_{11133}^{113}$		${ }_{0}^{\circ}$	${ }^{87564}$	（10598	${ }_{\substack{2584 \\ 2858}}^{2}$	11018 4482 48		81054	${ }_{\text {d }}^{4613}$	${ }_{\substack{4158 \\ 125}}$			（ens			
${ }_{4}$				5903			60094												4680	278	4781		1189								2261		629	461	330	22069					
${ }_{45}^{49}$		${ }^{19724}$		0	8035	5653			78894	。	－	旡123231	${ }^{45079}$	276	${ }^{20554}$	6795	23935	28882		331753		${ }_{\substack{30788 \\ 87600}}^{\substack{\text { che }}}$	124350	259952	45342	${ }^{23802}$	${ }_{50205}^{50}$		2162	${ }_{2541}^{29824}$		22161				（2060					${ }^{40776}$
${ }^{46}$	。				639	S0190						。	15026	1383	\bigcirc	－				63506									${ }_{2304}^{21204}$					${ }_{2309}$	${ }^{19295}$						
						27143								。	122005	。	。	5958			－	0				！	！				\％	！			${ }^{\text {axp }}$	！	！	！	！		
4	。					${ }^{450238}$					－				。	－	－			2193	\bigcirc	。				\bigcirc										:	:	：			
${ }_{51}^{50}$	。										。									\％	。					\％										!	!	：	!		
5	\bigcirc					\％					\bigcirc									\bigcirc	\％					：										!	：	：	!		
54	。				。	。					。	。				。				。	－				。	0				。	0	0				0	0	。	0		
${ }_{56}^{55}$	：					\％	：				：	\％			：	\％	\％			：	：				：	：	：			:	:	!	:			!	:	!	:		
${ }_{58}$						\bigcirc	0																												\％	\bigcirc	\bigcirc				
59						－																														o	0				

Table A5: Life history parameters assumed for S. mentella and S. fasciatus.

S. mentella				
M	0.1			MacAllister and Duplisea (2011)
h	0.67			MacAllister and Duplisea (2011)
Age-at-maturity	10			Knife-edged, Don Power, pers. commn
Fraction of M that occurs before spawning (M^{5})	0.25			
	$L_{\text {inf }}$	κ	t_{0}	
Length-at-age	45.23	0.0698	-1.64	$L_{a}=L_{\text {inf }}\left(1-e^{-\kappa\left(\alpha-t_{0}\right)}\right)$, Don Power, pers. commn
	α	β		
Weight-at-age	0.00944	3.107		$W_{a}=\alpha\left(L_{a}\right)^{\beta}$, MacAllister and Duplisea (2011)
s. fasciatus				
M	0.125			MacAllister and Duplisea (2011)
h	0.67			MacAllister and Duplisea (2011)
Age-at-maturity	9			Knife-edged, Don Power, pers. commn
Fraction of M that occurs before spawning (M^{5})				
	$L_{\text {inf }}$	κ	t_{0}	
Length-at-age	45.23	0.0698	-1.64	$L_{a}=L_{\text {inf }}\left(1-e^{-\kappa\left(\alpha-t_{0}\right)}\right)$, Don Power, pers. commn
	α	β		
Weight-at-age	0.01106	3.08		$W_{a}=\alpha\left(L_{a}\right)^{\beta}$, MacAllister and Duplisea (2011)

Appendix B - The Age-Structured Production Model

The model used for these assessments is an Age-Structured Production Model (ASPM) (e.g. Hilborn, 1990). Models of this type fall within the more general class of Statistical Catch-atAge Analyses. The approach used in an ASPM assessment involves the construction of an age-structured model of the population dynamics and fitting it to the available abundance indices by maximising the likelihood function. The general specifications of the model and its equations are described below, followed by details of the contributions to the (penalised) log-likelihood function from the different sources of data available and assumptions concerning the stock-recruitment relationship. Quasi-Newton minimization is used to minimize the total negative log-likelihood function (the package AD Model Builder ${ }^{\text {TM }}$, Otter Research, Ltd is used for this purpose).

B.1. Population dynamics

B.1.1 Numbers-at-age

The resource dynamics are modelled by the following set of population dynamics equations:

$$
\begin{align*}
& N_{y+1,0}=R_{y+1} \tag{B1}\\
& N_{y+1, a+1}=\left(N_{y, a} e^{-M_{a} / 2}-C_{y, a}\right) e^{-M_{a} / 2} \quad \text { for } 0 \leq a \leq m-2 \tag{B2}\\
& N_{y+1, m}=\left(N_{y, m-1} e^{-M_{m-1} / 2}-C_{y, m-1}\right) e^{-M_{m-1} / 2}+\left(N_{y, m} e^{-M_{m} / 2}-C_{y, m}\right) e^{-M_{m} / 2} \tag{B3}
\end{align*}
$$

where
$N_{y, a}$ is the number of fish of age a at the start of year y (which refers to a calendar year),
$R_{y} \quad$ is the recruitment (number of 0-year-old fish) at the start of year y,
$M_{a} \quad$ denotes the natural mortality rate for fish of age a,
$C_{y, a} \quad$ is the predicted number of fish of age a caught in year y, and
$m \quad$ is the maximum age considered (taken to be a plus-group), $m=20$.

These equations reflect Pope's form of the catch equation (Pope, 1972) (the catches are assumed to be taken as a pulse in the middle of the year) rather than the more customary Baranov form (Baranov, 1918) (for which catches are incorporated under the assumption of steady continuous fishing mortality). Pope's form has been used in order to simplify computations. As long as mortality rates are not too high, the differences between the Baranov and Pope formulations will be minimal.

B.1.2. Recruitment

The number of recruits at the start of year y is assumed to be related to the spawning stock size (i.e. the biomass of mature fish) by a Beverton-Holt stock-recruitment relationship (Beverton and Holt, 1957), parameterised in terms of the "steepness" of the stockrecruitment relationship, h, and the pre-exploitation equilibrium spawning biomass, $K^{s p}$,
and recruitment, R_{0} and allowing for annual fluctuation about the deterministic relationship:
$R_{y}=\frac{4 h R_{0} B_{y}^{s p}}{K^{s p}(1-h)+(5 h-1) B_{y}^{s p}} e^{\left(\varsigma_{y}-\sigma_{R}^{2} / 2\right)}$
where
$\varsigma_{y} \quad$ reflects fluctuation about the expected recruitment for year y, which is assumed to be normally distributed with standard deviation σ_{R} (which is input in the applications considered here); these residuals are treated as estimable parameters in the model fitting process.
$B_{y}^{s p} \quad$ is the spawning biomass at the start of year y, computed as:
$B_{y}^{s p}=\sum_{a=1}^{m} f_{y, a} w_{y, a}^{s t r t} N_{y, a} e^{-M_{a} M^{s}}$
where
$w_{y, a}^{s t r t}$ is the mass of fish of age a during spawning,
$f_{y, a}$ is the proportion of fish of age a that are mature
M^{s}. is the fraction of mortality that occurs before spawning (Table A5).

In the fitting procedure, $K^{s p}$ is estimated while h has thus far been fixed at 0.67 for consistency with McAllister and Duplisea (2011).

B.1.3. Total catch and catches-at-age

The catch by mass in year y is given by:
$C_{y}=\sum_{a=1}^{m} w_{a}^{m i d} C_{y, a}=\sum_{a=1}^{m} w_{a}^{m i d} N_{y, a} e^{-M_{a} / 2} S_{a} F_{y}$
where
$w_{a}^{\text {mid }}$ denotes the mass of fish of age $a+1 / 2$,
$C_{y, a}$ is the catch-at-age, i.e. the number of fish of age a, caught in year y,
$S_{a} \quad$ is the commercial selectivity (i.e. combination of availability and vulnerability to fishing gear) at age a; when $S_{a}=1$, the age-class a is said to be fully selected, and
$F_{y} \quad$ is the proportion of a fully selected age class that is fished.

The model estimate of the mid-year exploitable ("available") component of biomass is calculated by converting the numbers-at-age into mid-year mass-at-age (using the individual weights of the landed fish) and applying natural and fishing mortality for half the year:
$B_{y}^{e x}=\sum_{a=1}^{m} w_{a}^{m i d} S_{a} N_{y, a} e^{-M_{a} / 2}\left(1-S_{a} F_{y} / 2\right)$
whereas for survey estimates of biomass:

$$
\begin{equation*}
B_{y}^{s u r v, i}=\sum_{a=1}^{m} w_{a}^{m i d} S_{a}^{s u r v, i} N_{y, a} e^{-M_{a} \frac{m^{s u r v, i}}{12}}\left(1-S_{a} F_{y} \frac{m^{s u r v, i}}{12}\right) \tag{B8}
\end{equation*}
$$

where
$S_{a}^{\text {surv,i}}$ is the survey selectivity for age a for survey i, and
$m^{\text {surv,i}}$ is the month in which survey i takes place, see Table below.

Survey	Month $\left(m^{\text {surv }}\right)$
Unit 1	8
Unit 2	8
Division 2J3K	9
Unit 3	7

B.1.4. Initial conditions

For the first year $\left(y_{0}\right)$ considered in the model therefore, the stock is assumed to be at a fraction (θ) of its pre-exploitation biomass, i.e.:
$B_{y_{0}}^{s p}=\theta \cdot K^{s p}$
with the starting age structure:

$$
\begin{equation*}
N_{y_{0}, a}=R_{\text {start }} N_{\text {start }, a} \quad \text { for } 0 \leq a \leq m \tag{B10}
\end{equation*}
$$

where

$$
\begin{align*}
& N_{\text {start }, 0}=1 \tag{B11}\\
& N_{\text {start }, a}=N_{\text {start }, a-1} e^{-M_{a-1}}\left(1-\phi S_{a-1}\right) \quad \text { for } 1 \leq a \leq m-1 \tag{B12}\\
& N_{\text {start }, m}=N_{\text {start }, m-1} e^{-M_{m-1}}\left(1-\phi S_{m-1}\right) /\left(1-e^{-M_{m}}\left(1-\phi S_{m}\right)\right) \tag{B13}
\end{align*}
$$

where ϕ characterises the average fishing proportion over the years immediately preceding yo.

Unless indicated otherwise though, the stock is assumed to be at pristine equilibrium in 1960, i.e. $\theta=1$ and $\phi=0$ for the results reported here.

B.2. The (penalised) likelihood function

The model can be fit to (a subset of) CPUE and survey abundance indices, and commercial and survey catch-at-age data to estimate model parameters (which may include residuals about the stock-recruitment function, the fishing selectivities, the annual catches or natural mortality, facilitated through the incorporation of penalty functions described below). Contributions by each of these to the negative of the (penalised) log-likelihood ($-\ell \mathrm{n} L$) are as follows.

B.2.1. Survey abundance data

The likelihood is calculated assuming that the observed survey index is log-normally distributed about its expected value:
$I_{y}^{i}=\hat{I}_{y}^{i} \exp \left(\varepsilon_{y}^{i}\right) \quad$ or $\quad \varepsilon_{y}^{i}=\ell \mathrm{n}\left(I_{y}^{i}\right)-\ell \mathrm{n}\left(\hat{I}_{y}^{i}\right)$
where
$I_{y}^{i} \quad$ is the survey biomass index for year y and survey i,
$\hat{I}_{y}^{i}=\hat{q}^{i} \hat{B}_{y}^{\text {surv,i}}$ is the corresponding model estimate, where $\widehat{B}_{y}^{\text {surv,i}}$ is the model estimate of survey biomass, given by equation (B8),
$\hat{q}^{i} \quad$ is the constant of proportionality (catchability) for survey series i, and
$\varepsilon_{y}^{i} \quad$ from $N\left(0,\left(\sigma_{y}^{i}\right)^{2}\right)$.

The contribution of the survey biomass data to the negative of the log-likelihood function (after removal of constants) is then given by:
$-\ell \mathrm{n} L^{\text {surv }}=\sum_{i} \sum_{y}\left[\ln \left(\sigma_{y}^{i}\right)+\left(\varepsilon_{y}^{i}\right)^{2} / 2\left(\sigma_{y}^{i}\right)^{2}\right]$
where
$\sigma_{y}^{i} \quad$ is the standard deviation of the residuals for the logarithm of survey index i in year y.
The catchability coefficient q^{i} for survey index i is estimated by its maximum likelihood value:
$\ln \hat{q}^{i}=1 / n_{i} \sum_{y}\left(\ln I_{y}^{i}-\ln \hat{B}_{y}^{s u r v, i}\right)$

B.2.2. Commercial catches-at-length

The contribution of the catch-at-length data to the negative of the log-likelihood function under the assumption of an "adjusted" lognormal error distribution is given by:
$-\ell \mathrm{n} L^{C A L}=W^{C A L} \sum_{y} \sum_{l}\left\lfloor\ln \left(\sigma_{c o m} / \sqrt{p_{y, l}}\right)+p_{y, l}\left(\ln p_{y, l}-\ln \hat{p}_{y, l}\right)^{2} / 2\left(\sigma_{c o m}\right)^{2}\right]$
where
$p_{y, l}=C_{y, l} / \sum_{l^{\prime}} C_{y, l^{\prime}}$ is the observed proportion of fish caught in year y that are of length I,
$\hat{p}_{y, l}=\hat{C}_{y, l} / \sum_{l^{\prime}} \hat{C}_{y, l^{\prime}}$ is the model-predicted proportion of fish caught in year y that are of length I,
where
$\hat{C}_{y, l}=\sum_{a} \hat{C}_{y, a} A_{a, l}$
where

$$
\begin{equation*}
\hat{C}_{y, a}=N_{y, a} e^{-M_{a} / 2} S_{a} F_{y}\left(1-S_{y} F_{y} / 2\right) \tag{B19}
\end{equation*}
$$

and
$A_{a, l}$ is the proportion of fish of age a that fall in the length group / (i.e. $\sum_{a} A_{a, l}=1$ for all ages a)

The matrix A is calculated under the assumption that length-at-age is normally distributed about a mean given the von Bertalanffy equation, i.e.:

$$
\begin{equation*}
L_{a} \sim N\left[L_{\infty}\left(1-e^{-\kappa\left(a-t_{0}\right)}\right) ; \theta_{a}^{2}\right] \tag{B20}
\end{equation*}
$$

where
N is the normal distribution, and
θ_{a} is the standard deviation of length-at-age a, which is modelled to be proportional to the expected length at age a, i.e.:
$\theta_{a}=\beta L_{\infty}\left(1-e^{-\kappa\left(a-t_{0}\right)}\right)$
with $\beta=0.1$.
$\sigma_{\text {com }}$ is the standard deviation associated with the catch-at-length data, which is estimated in the fitting procedure by:

$$
\begin{equation*}
\hat{\sigma}_{c o m}=\sqrt{\sum_{y} \sum_{l} p_{y, l}\left(\ln p_{y, l}-\ln \hat{p}_{y, l}\right)^{2} / \sum_{y} \sum_{l} 1} \tag{B22}
\end{equation*}
$$

The log-normal error distribution underlying equation (B17) is chosen on the grounds that (assuming no ageing error) variability is likely dominated by a combination of interannual variation in the distribution of fishing effort, and fluctuations (partly as a consequence of such variations) in selectivity-at-age, which suggests that the assumption of a constant coefficient of variation is appropriate. However, for ages poorly represented in the sample, sampling variability considerations must at some stage start to dominate the variance. To take this into account in a simple manner, motivated by binomial distribution properties, the observed proportions are used for weighting so that undue importance is not attached to data based upon a few samples only.

Commercial catches-at-length are incorporated in the likelihood function using equation (B17), for which the summation over age l is taken from length $I_{\text {minus }}$ (considered as a minus group) to $I_{\text {plus }}$ (a plus group), see Table B1.

B.2.3. Survey catches-at-length

The survey catches-at-age are incorporated into the negative of the log-likelihood in an analogous manner to the commercial catches-at-age, assuming an adjusted log-normal error distribution (equation (B17)) where:
$p_{y, l}^{i}=C_{y, l}^{s u r v, i} / \sum_{l^{\prime}} C_{y, l^{\prime}}^{s u r v, i}$ is the observed proportion of fish of length I in year y for survey series i,
$\hat{p}_{y, l}^{i} \quad$ is the expected proportion of fish of length / in year y in the survey i, given by:
$\hat{p}_{y, l}^{i}=\hat{C}_{y, l}^{i} / \sum_{l^{\prime}} \hat{C}_{y, l^{\prime}}^{i}$ is the model-predicted proportion of fish caught in year y and survey i that are of length I,
where

$$
\begin{equation*}
\hat{C}_{y, l}^{i}=\sum_{a} \hat{C}_{a, l}^{i} A_{a, l} \tag{B23}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{C}_{y, a}^{i}=N_{y, a} S_{a}^{s u r v, i} e^{-M_{a} \frac{m^{s u r v, i}}{12}}\left(1-S_{a} F_{y} \frac{m^{s u r v, i}}{12}\right) \tag{B24}
\end{equation*}
$$

Survey catches-at-length are incorporated in the likelihood function using equation (B17), for which the summation over age I is taken from length $I_{\text {min }}$ (not considered as a minus group) to $I_{\text {plus }}$ (a plus group), see Table B1.

B.2.4. Stock-recruitment function residuals

The stock-recruitment residuals are assumed to be log-normally distributed. Thus, the contribution of the recruitment residuals to the negative of the (now penalised) loglikelihood function is given by:
$-\ell n L^{\text {SRpen }}=\sum_{y=y 1}^{y 2}\left[\varepsilon_{y}^{2} / 2 \sigma_{R}^{2}\right]$
where
$\varepsilon_{y} \quad$ from $N\left(0,\left(\sigma_{R}\right)^{2}\right)$, which is estimated for year $y 1$ to $y 2$ (see equation (B4)), and
$\sigma_{R} \quad$ is the standard deviation of the log-residuals, which is input ($\sigma_{R}=0.5$)

Table B1: Minus and plus length groups (in cm) for the commercial and survey CAL. Note: $I_{\text {min }}$ for the surveys is not taken as a minus group.

	S. mentella Units 1+2	Units 1+2	S. fasciatus Division 2J3K	Unit 3					
Commercial CAL:									
$I_{\text {minus }}$						20	20	no comm.	20
Survey CAL:	$I_{\text {plus }}$	45	45	CAL					

B.3. Model parameters

B.4.1. Fishing selectivity-at-length:

The commercial and survey fishing selectivity-at-length, S_{l} and $S_{l}^{\text {surv,i }}$ are estimated in terms of a logistic curve:

$$
\begin{equation*}
S_{l}=\left[1+\exp \left(-\left(l-l_{c}\right) / \delta\right)\right]^{-1} \tag{B26}
\end{equation*}
$$

where
$l_{c}^{f} \mathrm{cms}$ is the length-at-50\% selectivity,
$\delta^{f} \mathrm{~cm}^{-1}$ defines the steepness of the ascending limb of the selectivity curve.
The selectivities-at-length are then converted to an effective selectivity at age \tilde{S}_{a} :
$\widetilde{S}_{a}=\widetilde{w}_{a}^{\text {mid }} / w_{a}^{\text {mid }}$
with
$\tilde{w}_{a}^{\text {mid }}=\sum_{l} S_{l} w_{l} A_{a+1 / 2, l}$
$\widetilde{w}_{a}^{\text {mid }}$ is the selectivity-weighted mid-year weight-at-age a, and
$w_{l} \quad$ is the weight of fish of length $l ;$

REFERENCES

Baranov, F.T. 1918. On the question of the dynamics of the fishing industry. Nauchnyi issledovatelskii iktiologisheskii Institut Izvestia, I: 81-128.

Beverton, R.J.H., and Holt, S.J. 1957. On the dynamics of exploited fish populations. Fisheries Investment Series 2, Vol. 19, U.K. Ministry of Agriculture and Fisheries, London. 533pp.

Hilborn, R. 1990. Estimating the parameters of full age-structured models from catch and abundance data. International North Pacific Fisheries Commission Bulletin, 50: 207213.

Pope, J.G., 1972. An investigation of the accuracy of Virtual Population Analysis using cohort analysis. International Commission for the North Atlantic Fisheries Research Bulleting, 9: 65-74

