Interim OMP-13

C.L. de Moor* and D.S. Butterworth ${ }^{*}$
Correspondence email: carryn.demoor@uct.ac.za

Introduction

The management procedure used to recommend total allowable catches (TACs) and bycatches (TABs) for sardine and anchovy in South African waters is currently being revised. Given the extensive testing desired for this new management procedure, which among other factors includes taking account of the possibility of multiple sardine stocks and of the impact of the recommended catches on penguins, a final version of OMP13 is not yet available. However, the Small Pelagic Scientific Working Group has agreed an "Interim OMP13" for use in December 2012 for calculating recommended initial TAC/Bs for 2013. The revised management procedure, OMP-13, is expected to be finalised and agreed during 2013. This document details "Interim OMP-13".

Important Changes from OMP-08

Some of the key differences between OMP-08 (de Moor and Butterworth 2008) and Interim OMP-13 include the following:
i) The maximum total anchovy TAC has been decreased from 600000 t to 450000 t, to more accurately reflect the maximum catch possible by the industry. This maximum includes the allocation for the additional season.
ii) The additional season, originally designed to allow targeting of anchovy with minimal sardine bycatch, has been decreased from a four month period of 1 September to 31 December to a three month period from 1 October to 31 December, with the normal season now extending to the end of September rather than only until the end of August.
iii) A number of new (relatively small) TABs (e.g. a bycatch for anchovy landed by sardine only rights holders and a bycatch for small sardine landed with directed (large) sardine) have been introduced so that all landings can be accurately accounted.
iv) The key control parameters have been re-tuned based on updated perceptions of the sardine and anchovy resource productivity and dynamics (i.e. updated assessments), and changes to the operating model to account for changes to the period for the additional season.

Trade-Off Curve

The definitions of risk have remained unchanged from OMP-08:
risk $_{S} \quad$ - the probability that adult sardine biomass falls below the average adult sardine biomass over November 1991 and November 1994 at least once during the projection period of 20 years.

[^0]risk $_{A} \quad$ - the probability that adult anchovy biomass falls below 10% of the average adult anchovy biomass between November 1984 and November 1999 at least once during the projection period of 20 years.

The acceptable level of risk changes from one MP to the next given changes in the perceived level of productivity of a resource resulting from the inclusion of revised and new data in the underlying operating models. de Moor and Butterworth (2010) developed an objective method of determining an acceptable level of risk for a new MP. This method was applied to obtain a new risk level for sardine. A further step in the method was required for anchovy, given changes in assumed natural mortality and stock-recruitment relationships from the operating model used to develop OMP-08 to that used to develop Interim OMP-13 (de Moor and Butterworth 2012). The trade-off curve for Interim OMP-13 is shown in Figure 1. This curve is constructed by limiting risk $_{S}<0.21$ and risk ${ }_{A}<0.20$. The acceptable risk level for anchovy will be further investigated during the finalisation of OMP-13. The 'corner point' of the trade-off curve, where the directed average sardine catch is maximised while maintaining a near-maximum average anchovy catch, was used to choose the directed sardine-anchovy trade-off (Figure 2).

In Summary

The details of all the rules governing Interim OMP-13 are fully described in the Appendix, while Table 1 lists the control parameters of Interim OMP-13, with comparisons to those for previous OMPs. Table 2 lists the data required for input to this OMP. Table 3 lists some key summary statistics for the sardine and anchovy resources under Interim OMP-13. Figure 3 shows the simulated distributions of sardine and anchovy at the end of the projection period under Interim OMP-13 compared to a no-catch scenario

References

de Moor, C.L., and Butterworth, D.S. 2010. Items to be considered in the development of an updated management procedure for the South African pelagic fishery (OMP-12). MARAM International Stock Assessment Workshop, 29 November - 3 December 2010, Cape Town. Document MARAM IWS/DEC10/S/P1. 13pp.
de Moor, C.L., and Butterworth, D.S. 2012. Further results towards the selection of "Draft OMP-13". Unpublished report, Department of Agriculture Forestry and Fisheries, South Africa. Report No. FISHERIES/2012/NOV/SWG-PEL/61. 17pp.

Table 1. Definitions of control parameters and constraints used in OMP-02, OMP-04, OMP-08 and Interim OMP-13 together with their values. All mass-related quantities are given in thousands of tons. Values for Interim OMP-13 which differ from OMP-08 are given in bold face.

	Key Control Parameters	OMP-02	OMP-04	OMP-08	$\begin{gathered} \text { Interim } \\ \text { OMP-13 } \end{gathered}$
β	Directed sardine catch control parameter	0.1865	0.14657	0.097	0.090
$\alpha_{n s}$	Directed anchovy catch control parameter for normal season	0.16655	0.73752	0.78	0.321
$\alpha_{\text {ads }}$	Directed anchovy catch control parameter for additional season	0.99956	1.47504	1.17	0.4815
	Fixed TABs	OMP-02	OMP-04	OMP-08	$\begin{gathered} \hline \text { Interim } \\ \text { OMP-13 } \end{gathered}$
$T A B_{\text {big }}^{S}$	Fixed $>14 \mathrm{~cm}$ sardine bycatch	10^{1}	10^{1}	$3.5{ }^{1}$	7
$T A B^{A}$	Fixed anchovy bycatch for sardine only rights holders	N/A	N/A	N/A	0.5
$T A B_{y, \text { small, rh }}^{S}$	Fixed $\leq 14 \mathrm{~cm}$ sardine bycatch with round herring	N/A	N/A	N/A	1.0
	Fixed Control Parameters	OMP-02	OMP-04	OMP-08	$\begin{gathered} \hline \text { Interim } \\ \text { OMP-13 } \end{gathered}$
δ	Scale-down factor applied to initial anchovy TAC	$0.85{ }^{2}$	0.85	0.85	0.85
p	Weighting given to recruitment survey in anchovy TAC	0.7^{3}	0.7	0.7	0.7
q	Relates to average TAC under OMP-99 if $\alpha_{n s}=1$	$300{ }^{4}$	300	300	300
$\bar{B}_{\text {Nov }}^{A}$	Historic average 1984 to 1999 index of anchovy abundance from the November spawner biomass surveys		2149	1380	1380
$\bar{N}_{\text {rec } 0}^{A}$	Average 1985 to 1999 observed anchovy recruitment in May, back-calculated to November of the previous year	N/A	N/A	$\begin{gathered} 198 \\ \text { billion } \end{gathered}$	$\underset{\text { billion }}{180}$
ϖ	Estimate of the percentage of $\leq 14 \mathrm{~cm}$ sardine bycatch in the $>14 \mathrm{~cm}$ sardine catch	N/A	N/A	N/A	0.07
γ_{y}	Range within which initial estimate of juvenile sardine : anchovy ratio is set, dependent upon observed sardine biomass	0.1	0.1-0.2	0.1-0.2	0.1-0.2
$\gamma_{\text {max }}$	Maximum of the logistic curve for γ_{y}	N/A	0.1	0.1	0.1
B_{50}	Biomass of sardine where the logistic curve for γ_{y} reaches 50\%	N/A	2000	2000	2000

[^1]Table 1 (continued).

	Constraints	OMP-02	OMP-04	OMP-08	Interim OMP-13
B_{95}	Biomass of sardine where the logistic curve for γ_{y} reaches 95%	N/A	3177.776	3177.776	3177.776
$c_{\text {mitac }}^{S}$	Minimum directed sardine TAC	90	90	90	90
$c_{\text {mntac }}^{A}$	Minimum normal season anchovy TAC	150	150	120	120
$c_{m x t a c}^{S}$	Maximum directed sardine TAC	250	500	500	500
$c_{m x t a c}^{A}$	Maximum total anchovy TAC	600	600	600	450
$c_{\text {tier }}^{S}$	Two-tier threshold for directed sardine TAC	N/A	240	255	255
$c_{\text {tier }}^{A}$	Two-tier threshold for normal season anchovy TAC	N/A	330	330	330
$c_{m x d n}^{S}$	Maximum proportion by which directed sardine TAC can be reduced annually	0.20	0.15	0.20	0.20
$c_{m x d n}^{A}$	Maximum proportion by which normal season anchovy TAC can be reduced annually	0.30	0.25	0.25	0.25
$c_{m x i n c}^{n s, A}$	Maximum increase in normal season anchovy TAC	150	200	150	150
$c_{\text {mxinc }}^{a d s, A}$	Maximum additional season anchovy TAC	100	150	120	120
$T A B_{\text {ads }}^{S}$	Maximum sardine bycatch during the additional season	2	2	2	$1.5{ }^{5}$
$B_{e c}^{S}$	Threshold at which Exceptional Circumstances are invoked for sardine	150	250	300	300
$B_{e c}^{A}$	Threshold at which Exceptional Circumstances are invoked for anchovy	400	400	400	400
Δ^{S}	threshold above $B_{e c}^{S}$ at which linear smoothing is introduced before sardine exceptional circumstances are declared (to ensure continuity)	N/A	400	400	400
Δ^{A}	threshold above $B_{e c}^{A}$ at which linear smoothing is introduced before anchovy exceptional circumstances are declared (to ensure continuity)	N/A	N/A	100	100
B_{1}	threshold above which the anchovy additional subseason TAC can increase more rapidly	N/A	N/A	1000	1000
B_{2}	threshold above which the anchovy additional subseason TAC reaches a maximum	N/A	N/A	1500	1500
x^{s}	the proportion of $B_{e c}^{S}$ below which sardine TAC is zero.	0	0	0.25	0.25
x^{A}	the proportion of $B_{e c}^{A}$ below which anchovy TAC is zero.	0	0.25	0.25	0.25
$R_{\text {crit }}$	sardine recruitment threshold above which the maximum possible mid-year increase in sardine TAC under exceptional circumstances is achieved	N/A	N/A	17.38	16.48

[^2]Table 2. The data required as input to the Interim OMP-13 formulae to provide the directed sardine TAC and initial anchovy TAC and sardine TAB recommendations for year y in December of year $y-1$, and to set the revised and final anchovy TAC and sardine TAB recommendations in June of year y.

	Input	Definition
	$B_{y-1, N}^{S}$	November survey estimate of sardine $1+$ biomass in year $y-1$ (in thousands of tons)
	$B_{y-1, N}^{A}$	November survey estimate of anchovy $1+$ biomass in year $y-1$ (in thousands of tons)
$\begin{aligned} & \overrightarrow{0} \\ & \vdots \end{aligned}$	$N_{y, r}^{A}$	May survey estimate of anchovy recruitment in year y (in billions)
	t_{y}^{A}	Day of commencement of recruitment survey (time in months after 1 May)
	$C_{y, 1}^{A}$	Anchovy catch from 1 November of year $y-1$ to 31 March of year y (in billions)
	$C_{y, 0 b s}^{A}$	Anchovy catch from 1 April of year y to the day before the commencement of the recruitment survey (in billions)
	$r_{y, s u r}$	Ratio of juvenile sardine to anchovy (by mass) indicated by the recruitment survey
	$r_{y, \text { com }}$	Ratio of juvenile sardine to anchovy (by mass) in the commercial catches during May, using only the commercial catches comprising at least 50% anchovy

Table 3. Key summary statistics for the sardine and anchovy resources under a no-catch scenario and Interim OMP-13:

- the probability that adult sardine biomass falls below the average adult sardine biomass over November 1991 to November 1994 (the "risk threshold", Risk ${ }^{S}$) at least once during the projection period of 20 years, risk $_{S}$;
- the probability that adult anchovy biomass falls below 10% of the average adult anchovy biomass between November 1984 and November 1999 at least once during the projection period of 20 years, risk ${ }_{A}$;
- average minimum biomass over the projection period as a proportion of carrying capacity ($K^{S / A}$) and as a proportion of the risk threshold;
- average biomass at the end of the projection period as a proportion of carrying capacity, as a proportion of the risk threshold, and as a proportion of biomass at the beginning of the projection period;
- average directed catch (in thousands of tons), $\bar{C}^{S} / \bar{C}^{A}$, and average anchovy catch during the additional season, $\bar{C}_{a d}^{A}$;
- average sardine bycatch comprising juvenile sardine bycatch with anchovy, round herring and large sardine (in thousands of tons), $\bar{C}_{b y}^{s}$;
- average proportional annual change in directed catch, $A A V^{S} / A A V^{A}$.
- proportion of times Exceptional Circumstances are/not declared ($\left.E C^{\text {declared }} / E C^{\text {NOTdeclared }}\right)$ when true biomass is/not below the corresponding threshold ($B_{y}^{A / S}<$ or \geq Threshold);
- proportion of times the directed TAC decreases below the minimum TAC (i.e., Exceptional Circumstances are declared), $T A C_{y}^{A / S}<c_{m n t a c}^{A / S}$; and
- average number of years for which Exceptional Circumstances, if declared, are declared consecutively, $E C_{\text {consec }}^{A / S}$.

Sardine	No Catch	Interim OMP-13	Anchovy	No Catch	Interim OMP13
β		0.090	α		0.321
risk $_{S}$	0.031	0.209	risk $_{A}$	0.02	0.197
$\overline{B_{\text {min }}^{S} / K^{S}}$	0.54	0.41	$\overline{B_{\text {min }}^{A} / K^{A}}$	0.22	0.11
$\overline{B_{\text {min }}^{S} / \text { Risk }^{S}}$	2.03	1.56	$\overline{B_{\text {min }}^{A} / \text { Risk }^{A}}$	7.57	3.87
$\overline{B_{2032}^{S} / K^{S}}$	0.99	0.75	$\overline{B_{2032}^{A} / K^{A}}$	1.17	0.66
$\overline{B_{2032}^{S} / \text { Risk }^{S}}$	4.04	3.00	$\overline{B_{2032}^{A} / \text { Risk }^{A}}$	48.19	26.43
$\overline{B_{2032}^{S} / B_{2011}^{S}}$	1.99	1.45	$\overline{B_{2032}^{A} / B_{2011}^{A}}$	7.59	4.16

Table 3 (continued).

Sardine	No Catch	Interim OMP-13	Anchovy	No Catch	Interim OMP-13
\bar{C}^{s} ('13-'32)	0	154	\bar{C}^{A} ('13-'32)	0	259
$\bar{C}_{\text {by }}{ }^{\text {d }}$	0	38	$\bar{C}_{a d}^{A}($ '13-'32)	0	70
\bar{C}^{S} ('13-'15)	0	125	\bar{C}^{A} ('13-'15)	0	244
			$\bar{C}_{a d}^{A}\left({ }^{\prime} 13-15\right)$	0	56
$A A V^{S}$ ('13-‘32)	0.00	0.20	$A A V^{A}$ ('13-‘32)	0.00	0.31
$A A V^{S}$ ('13-'15)	0.00	0.04	$A A V^{A}$ ('13-'15)	0.00	0.08
$p\left(E C^{\text {declared }}, B_{y}^{S}<\right.$ Threshold $)$	0.00	0.01	$p\left(E C^{\text {declared }}, B_{y}^{A}<\right.$ Threshold $)$	0.02	0.13
$p\left(E C^{\text {declared }}, B_{y}^{S} \geq\right.$ Threshold $)$	0.01	0.05	$p\left(E C^{\text {declared }}, B_{y}^{A} \geq\right.$ Threshold $)$	0.01	0.01
$p\left(E C^{\text {NOTdeclared }}, B_{y}^{S}<\right.$ Threshold	0.00	0.00	$p\left(E C^{\text {NOTdeclared }}, B_{y}^{A}<\right.$ Threshold	0.01	0.03
$p\left(E C^{\text {NOTdeclared }}, B_{y}^{S} \geq\right.$ Threshold	0.99	0.95	$p\left(E C^{\text {NOTdeclared }}, B_{y}^{A} \geq\right.$ Threshold	0.96	0.82
$p\left(T A C_{y}^{S}<c_{m n t a c}^{S}\right)$	0	0.05	$p\left(T A C_{y}^{A}<c_{m n t a c}^{A}\right)$	0	0.15
$E C_{\text {corsec }}^{\text {S }}$	0	1.3 years	$E C_{\text {consec }}^{A}$	0	3.1 years

Figure 1. Trade-off curves and chosen points on the curve for OMP-08 and Interim OMP-13. The trade-off curve for Interim OMP-13 is determined by points satisfying risk ${ }_{S}<0.21$ and risk ${ }_{A}<0.20$.

Figure 2. The average directed sardine and anchovy catches (as shown on the Trade-off curve in Figure 1) plotted against a) the sardine control parameter, β and b) the anchovy control parameter, $\alpha_{n s}$. The grey vertical lines indicate a value of a) $\beta=0.090$ and b) $\alpha_{n s}=0.321$ corresponding to the corner point of Interim OMP-13.

Figure 3. Comparison of a) anchovy and b) sardine $1+$ biomass distributions in the final projection year under a no catch scenario and Interim OMP-13.

Appendix: Interim OMP-13 Harvest Control Rules

In this Appendix, catches-at-age are given in numbers of fish (in billions), whereas the TACs and TABs are given in thousands of tons. Sardine and anchovy total allowable catches (TACs) and sardine total allowable bycatches (TABs) are set at the start of the year and the latter two are revised during the year (or all three if Exceptional Circumstances apply for sardine).

Initial TACs / TAB (January)

The directed sardine TAC and initial directed anchovy TAC and TAB for sardine bycatch are based on the results of the November spawner biomass survey. These limits are announced prior to the start of the pelagic fishery at the beginning of each year.

The directed sardine TAC is set at a proportion of the previous year's November spawner biomass index of abundance, but subject to the constraints of a minimum and a maximum value. If the previous year's TAC is below the 'two-tier' threshold, then the TAC is subject to a maximum percentage drop from the previous year's TAC. If it is above this threshold, any reduction is limited only by a lower bound of the corresponding threshold less the maximum percentage drop.

The directed anchovy initial TAC is based on how the most recent November spawner biomass survey estimate of abundance relates to the historic (non-peak) average between 1984 and 1999. In the absence of further information, which will become available after the May recruitment survey, this initial TAC assumes the forthcoming recruitment (which will form the bulk of the catch) will be average. A 'scale-down' factor, δ, is therefore introduced to provide a buffer against possible poor recruitment. The anchovy TAC is subject to similar constraints as apply for sardine.

A fixed anchovy TAB, TAB ${ }^{A}$, for sardine only rights holders has been introduced in OMP-13 (see Table 1).

A fixed $>14 \mathrm{~cm}$ sardine TAB, $T A B_{\text {big }}^{S}$, consisting of mainly adult sardine bycatch with round herring and to a lesser extent with anchovy has been introduced in OMP-13 (replacing the "adult sardine bycatch with round herring" TAB in OMP-08) (see Table 1).

A new $\leq 14 \mathrm{~cm}$ sardine TAB has been introduced in OMP-13. This consists of a fixed allocation for bycatch with round herring, $T A B_{y, s m a l l, r h}^{S}$, and an allocation for small sardine bycatch in the $>14 \mathrm{~cm}$ directed sardine landings, set proportional to the directed sardine TAC.

The final TAB is a $\leq 14 \mathrm{~cm}$ sardine TAB with anchovy, and is set proportional to the anchovy TAC.

Directed sardine TAC:

$$
T A C_{y}^{S}=\beta B_{y-1, N o v}^{o b s, S}
$$

(OMP.1)
Subject to:

$$
\begin{align*}
\max \left\{\left(1-c_{\text {mxdn }}^{S}\right) T A C_{y-1}^{S} ; c_{\text {mntac }}^{S}\right\} \leq T A C_{y}^{S} \leq c_{\text {mxtac }}^{S} & \text { if } T A C_{y-1}^{S} \leq c_{\text {tier }}^{S} \\
\quad \max \left\{\left(1-c_{\text {mxdn }}^{S}\right) c_{\text {tier }}^{S} ; c_{\text {mntac }}^{S}\right\} \leq T A C_{y}^{S} \leq c_{\text {mxtac }}^{S} & \text { if } T A C_{y-1}^{S}>c_{\text {tier }}^{S} \tag{OMP.2}
\end{align*}
$$

Initial directed anchovy TAC: $\quad T A C_{y}^{1, A}=\alpha_{n s} \delta q\left(p+(1-p) \frac{B_{y-1}^{o b s, A}}{\bar{B}_{N o v}^{A}}\right)$
Subject to: $\begin{array}{cl}\max \left\{\left(1-c_{m x d n}^{A}\right) T A C_{y-1}^{2, A} ; c_{m n t a c}^{A}\right\} \leq T A C_{y}^{1, A} \leq c_{m x t a c}^{A} & \text { if } T A C_{y-1}^{2, A} \leq c_{\text {tier }}^{A} \\ \max \left\{\left(1-c_{m x d n}^{A}\right) c_{\text {tier }}^{A} ; c_{m n t a c}^{A}\right\} \leq T A C_{y}^{1, A} \leq c_{m x t a c}^{A} & \text { if } T A C_{y-1}^{2, A}>c_{\text {tier }}^{A}\end{array}$
$<14 \mathrm{~cm}$ sardine TAB with directed $>14 \mathrm{~cm}$ sardine:

$$
\begin{equation*}
T A B_{y, \text { small }}^{S}=\omega T A C_{y}^{S} \tag{OMP.5}
\end{equation*}
$$

Initial $<14 \mathrm{~cm}$ sardine TAB with anchovy: $T A B_{y, \text { anch }}^{1, S}=\gamma_{y} T A C_{y}^{1, A}$
where:

$$
\gamma_{y}=0.1+\frac{\gamma_{\max }}{1+\exp \left(-\ln (19) \frac{\left(B_{y-1, N}^{S, o b s}-B_{50}\right)}{\left(B_{95}-B_{50}\right)}\right)}
$$

Here γ_{y} increases according to a logistic curve from 10% in years in which the survey estimated sardine
November $1+$ biomass, $B_{y-1, N}^{S, o b s}$, is poor to average, towards a maximum when sardine biomass is higher (Figure A.1).

To maintain continuity in the directed sardine and initial anchovy TACs as the Exceptional Circumstances thresholds (see below), $B_{e c}^{S}$ and $B_{e c}^{A}$, are approached from above and below, the following linear smoothing is applied.

If $B_{e c}^{S} \leq B_{y-1, N}^{o b s, S} \leq B_{e c}^{S}+\Delta^{S}$ we have:

$$
\begin{equation*}
T A C_{y}^{S}=\left(1-\frac{B_{y-1, N}^{o b s, S}-B_{e c}^{S}}{\Delta^{S}}\right) \times T A C_{y}^{S}{ }_{y}^{\text {before }}+\left(\frac{B_{y-1, N}^{o b s, S}-B_{e c}^{S}}{\Delta^{S}}\right) \times T A C_{y}^{S^{*}} \tag{OMP.8}
\end{equation*}
$$

where $T A C_{y}^{S}{ }_{y}$ before is the value output from equation (OMP.1) subject to $c_{m n t a c}^{S}$ and $c_{m x t a c}^{S}$ only, while $T A C_{y}^{S^{*}}$ is the value output from equation (OMP.2).

If $B_{e c}^{A} \leq B_{y-1, N}^{o b s, A} \leq B_{e c}^{A}+\Delta^{A}$ we have:
$T A C_{y}^{1, A}=\left(1-\frac{B_{y-1, N}^{\text {obs }, A}-B_{e c}^{A}}{\Delta^{A}}\right) \times T A C_{y}^{1, A_{-} \text {before }}+\left(\frac{B_{y-1, N}^{o b s, A}-B_{e c}^{A}}{\Delta^{A}}\right) \times T A C_{y}^{1, A^{*}}$
where $T A C_{y}^{1, A_{-} \text {before }}$ is the value output from equation (OMP.3) subject to $c_{m n t a c}^{A}$ and $c_{m x t a c}^{A}$ only, while $T A C_{y}^{1, A^{*}}$ is the value output from equation (OMP.4).

In the above equations the symbols used are as follows. See Table 1 for fixed values:
$B_{y, N}^{\text {obs,S }} \quad$ - the observed estimate of sardine abundance from the hydroacoustic spawner biomass survey in November of year y; during the testing of OMP-13, these values were simulated using equation (A.28) of de Moor and Butterworth 2012
$\beta \quad-\mathrm{a}$ control parameter reflecting the proportion of the previous year's November spawner biomass index of abundance that is used to set the directed sardine TAC, scaled to meet target risk levels for sardine and anchovy
$B_{y, N}^{o b s, A} \quad$ - the observed estimate of anchovy abundance from the hydroacoustic spawner biomass survey in November of year y; during the testing of OMP-13, these values were simulated using equation (A.28) of de Moor and Butterworth 2012
$\bar{B}_{\text {Nov }}^{A} \quad$ - the historic average index of anchovy abundance from the spawner biomass surveys from November 1984 to November 1999.
$\alpha_{n s} \quad-\quad$ a control parameter which scales the anchovy TAC to meet target risk levels for sardine and anchovy.
$\delta \quad-\mathrm{a}$ 'scale-down' factor used to lower the initial anchovy TAC to provide a buffer against possible poor recruitment.

- the weight given to the recruit survey component compared to the spawner biomass survey component in setting the anchovy TAC.
$q \quad-\mathrm{a}$ constant value reflecting the average annual TAC expected under OMP99 under average conditions if $\alpha_{n s}=1$.
$c_{\text {munac }}^{S} \quad$ - the minimum directed TAC to be set for sardine.
$c_{m n t a c}^{A} \quad-$ the minimum normal seadon TAC to be set for anchovy.
$c_{\text {mxtac }}^{S} \quad-$ the maximum directed TAC to be set for sardine.
$c_{m x t a c}^{A} \quad$ - the maximum total TAC to be set for anchovy.
$c_{\text {tier }}^{S} \quad$ - the two-tier threshold for directed sardine TAC.
$c_{\text {tier }}^{A} \quad-$ the two-tier threshold for normal season anchovy TAC.
$c_{m x d n}^{S} \quad$ - the maximum proportional amount by which the directed sardine TAC can be reduced from one year to the next.
$c_{m x d n}^{A} \quad-$ the maximum proportional amount by which the normal season directed anchovy TAC can be reduced from one year to the next, (note that the additional season anchovy TAC is not taken into consideration in this constraint, which consequently depends on $T A C_{y-1}^{2, A}$, not $T A C_{y-1}^{3, A}$ - see below for formulae for these quantities).
$\varpi \quad$ - an estimate of the maximum percentage of $\leq 14 \mathrm{~cm}$ sardine bycatch in the $>14 \mathrm{~cm}$ sardine catch
$\gamma_{y} \quad$ - a conservative estimate of the anticipated ratio of juvenile sardine to juvenile anchovy in subsequent catches.
$\gamma_{\max } \quad-$ maximum of the logistic curve for γ_{y}.
$B_{50} \quad$ - biomass where the logistic curve for γ_{y} reaches 50%.
$B_{95} \quad$ - biomass where the logistic curve for γ_{y} reaches 95%.
$B_{e c}^{S} \quad-$ the biomass threshold below which Exceptional Circumstances apply for sardine.
$B_{e c}^{A} \quad-$ the biomass threshold below which Exceptional Circumstances apply for anchovy.
- the threshold above the Exceptional Circumstances threshold, $B_{e c}^{S}$, below which the sardine TAC is smoothed until $B_{e c}^{S}$ is reached.
$\Delta^{A} \quad$ - the threshold above the Exceptional Circumstances threshold, $B_{e c}^{A}$, below which the anchovy TAC is smoothed until $B_{e c}^{A}$ is reached.

Revised TACs / TAB (June)

The anchovy TAC and sardine TAB midyear revisions are based on the most recent November and now also recruit surveys. As the estimate of recruitment is now available, the 'scale-down' factor, δ, is no longer needed to set the anchovy TAC. The additional constraints include restricting the amount to which the revised anchovy TAC may exceed the initial anchovy TAC (because of limitations in industry processing capacity) and ensuring that the revised anchovy TAC is not less than the initial anchovy TAC.

The revised $\leq 14 \mathrm{~cm}$ sardine TAB with anchovy is calculated using an estimate of the ratio, r_{y}, of juvenile sardine to anchovy, provided this ratio is larger than γ_{y}, which was used to set the initial TAB.

Revised anchovy TAC: $\quad T A C_{y}^{2, A}=\alpha_{n s} q\left(p \frac{N_{y-1, \text { rec } 0}^{A}}{\bar{N}_{r e c 0}^{A}}+(1-p) \frac{B_{y-1, N}^{o b s, A}}{\bar{B}_{\text {Nov }}^{A}}\right)$
Subject to:

$$
\begin{align*}
& \max \left\{T A C_{y}^{1, A} ;\left(1-c_{m x d n}^{A}\right) T A C_{y-1}^{2, A}\right\} \leq T A C_{y}^{2, A} \leq \min \left\{c_{m x t a c}^{A} ; T A C_{y}^{1, A}+c_{m x i n}^{n s, A}\right\} \\
& \quad \max \left\{T A C_{y}^{1, A} ;\left(1-c_{m x d n}^{A}\right) c_{\text {tier }}^{A}\right\} \leq T A C_{y}^{2, A} \leq \min \left\{c_{m x t a c}^{A} ; T A C_{y}^{1, A}+c_{m x i n c}^{n s, A}\right\} \tag{OMP.11}
\end{align*} c_{\text {tier }}^{A} T_{y-1}^{2, A}>c_{\text {tier }}^{A}
$$

Revised $<14 \mathrm{~cm}$ sardine TAB with anchovy:

$$
\begin{equation*}
T A B_{y, a n c h}^{2, S}=\lambda_{y} T A C_{y}^{1, A}+r_{y}\left(T A C_{y}^{2, A}-T A C_{y}^{1, A}\right) \tag{OMP.12}
\end{equation*}
$$

Where:

$$
\lambda_{y}=\max \left\{\gamma_{y}, r_{y}\right\}
$$

As for the initial TAC, continuity in the revised anchovy TAC as the Exceptional Circumstances thresholds are approached from above and below, is maintained by applying the following linear smoothing.

If $B_{e c}^{A} \leq B_{y, p r o j}^{A} \leq B_{e c}^{A}+\Delta^{A}$ we have:
$T A C_{y}^{2, A}=\left(1-\frac{B_{y, p r o j}^{A}-B_{e c}^{A}}{\Delta^{A}}\right) \times T A C_{y}^{2, A_{-} \text {before }}+\left(\frac{B_{y, p r o j}^{A}-B_{e c}^{A}}{\Delta^{A}}\right) \times T A C_{y}^{2, A^{*}}$
where $T A C_{y}^{2, A_{-} \text {before }}$ is the value output from equation (OMP.10) subject to $c_{m n t a c}^{A}$ and $T A C_{y}^{1, A}$ only, while $T A C_{y}^{2, A^{*}}$ is the value output from equation (OMP.11), and $B_{y, p r o j}^{A}$ is determined by equation (OMP.24).

Note that by construction $T A B_{y}^{2, S} \geq T A B_{y}^{1, S}$ as $\lambda \geq \gamma_{y}$ and $T A C_{y}^{2, A} \geq T A C_{y}^{1, A}$. In addition to the previous definitions, we have:
$N_{y-1, \text { rec } 0}^{A} \quad$ - the simulated estimate of anchovy recruitment from the recruitment survey in year $y, N_{y, r}^{o b s, A}$ ${ }^{6}$, back-calculated to 1 November $y-1$ by taking natural and fishing mortality into account (equation (OMP.14) below); during the testing of OMP-13, these values are simulated assuming $t_{y}^{A}=0.5$.
$\bar{N}_{\text {rec } 0}^{A} \quad$ - the average 1985 to 1999 observed anchovy recruitment in May, back-calculated (using equation (A.14)) to November of the previous year.
$c_{m x i n c}^{n s, A} \quad$ - the maximum amount by which the anchovy TAC is allowed to be increased within the normal season.
$r_{y}=\frac{1}{2}\left(r_{y, \text { sur }}+r_{y, \text { com }}\right)$

- the ratio of juvenile sardine to anchovy "in the sea" during May in year y, calculated from the recruit survey and the sardine bycatch to anchovy ratio in the commercial catches ${ }^{7}$ during May;

[^3]during the testing of OMP-13, these values are simulated using equations (A.13) and (A.14) of de Moor and Butterworth 2012.

The anchovy TAC equations require that $N_{y, r}^{o b s, A}$, the recruitment numbers estimated in the survey, be backcalculated to November of the previous year, assuming a fixed value of 1.2 year ${ }^{-1}$ for M_{j}^{A}. When simulating, the value of 1.2 year $^{-1}$ is used regardless of the operating model used. This is because the harvest-control rule needs to be independent of the potential population dynamics models, and is therefore based on the base case assessment model. The back-calculated recruitment numbers are calculated as follows:

$$
\begin{equation*}
N_{y-1, r e c 0}^{A}=\left(N_{y, r}^{o b s, A} e^{t_{y}^{A} \times 1.2 / 12}+C_{y, 0 b s}^{A}\right) e_{8}^{0.5 \times 1.2}{ }_{8} \tag{OMP.14}
\end{equation*}
$$

In the above equation we have
$C_{y, 0 b s}^{A} \quad$ - the observed juvenile anchovy landed by number (in billions) from the $1^{\text {st }}$ of November year y 1 to the day before the recruit survey commences in year y; during the testing of OMP-13, these values are simulated using equation (A.8) of de Moor and Butterworth 2012
$t_{y}^{A} \quad-$ the timing of the anchovy recruit survey in year y (number of months) relative to the $1^{\text {st }}$ of May that year.

Final TACs / TABs (the anchovy additional sub-season from October)

The final anchovy TAC is adjusted from the revised normal season TAC to achieve better utilisation of the anchovy resource later in the year when the anchovy and juvenile sardine no longer shoal together in large quantities. Two thresholds, $B_{1} \geq B_{e c}^{A}+\Delta^{A}$ and $B_{2} \geq B_{1}$ allow for a possible rapid increase to the maximum in the additional season anchovy TAC dependent on the projected November spawner biomass (based on the observed May recruitment). This rapid increase starts once the projected biomass exceeds B_{1}, and reaches the maximum when the projected biomass reaches B_{2} (see Figure A.2). The sardine TAB is increased by a small tonnage. This increase is the minimum of a fixed tonnage or γ_{y} of the difference between the anchovy revised and final TACs.

Because the anchovy additional sub-season is treated as completely separate from the anchovy normal season, the anchovy TAC and sardine TAB actually applied during the sub-season are $T A C_{y}^{3, A}-T A C_{y}^{2, A}$ and $T A B_{y}^{3, S}-T A B_{y}^{2, S}$ respectively.

[^4]$\begin{array}{ll}\text { Final anchovy TAC: } & T A C_{y}^{3, A}=\alpha_{a d s} q\left(p \frac{N_{y-1, \text { rec } 0}^{A}}{\bar{N}_{\text {rec } 0}^{A}}+(1-p) \frac{B_{y-1, N}^{o b s, A}}{\bar{B}_{N o v}^{A}}\right) \\ \text { Subject to: } & T A C_{y}^{2, A} \leq T A C_{y}^{3, A} \leq \min \left\{c_{m x t a c}^{A} ; T A C_{y}^{2, A}+c_{m x i n c}^{a d s, A}\right\}\end{array}$
(OMP.15)

In addition:

$$
\begin{array}{cc}
T A C_{y}^{3, A}=T A C_{y}^{3, A^{*}} & \text { if } B_{y, p r o j}^{A}<B_{1} \tag{OMP.17}\\
T A C_{y}^{3, A}=T A C_{y}^{3, A^{*}}+\frac{c_{m x i n c}^{a d s, A}-\left(T A C_{y}^{3, A^{*}}-T A C_{y}^{2, A}\right)}{B_{2}-B_{1}}\left(B_{y, p r o j}^{A}-B_{1}\right) & \text { if } B_{1} \leq B_{y, p r o j}^{A}<B_{2} \\
T A C_{y}^{3, A}=T A C_{y}^{2, A}+c_{m x i n c}^{a d s, A} & \text { if } B_{y, p r o j}^{A} \geq B_{2}
\end{array}
$$

where $T A C_{y}^{3, A^{*}}$ is the value output from equations (OMP.15) and (OMP.16) and $B_{y, p r o j}^{A}$ is calculated using the equivalent of equation (OMP.24) for the final TAC.

Final $<14 \mathrm{~cm}$ sardine TAB with anchovy:

$$
\begin{equation*}
T A B_{y, a n c h}^{3, S}=T A B_{y, \text { anch }}^{2, S}+\min \left\{T A B_{a d s}^{S} ; r_{y}\left(T A C_{y}^{3, A}-T A C_{y}^{2, A}\right)\right\} \tag{OMP.18}
\end{equation*}
$$

As before, continuity in the final anchovy TAC as $B_{e c}^{A}$ is approached from above and below, is maintained by applying the following linear smoothing.

If $B_{e c}^{A} \leq B_{y, p r o j}^{A} \leq B_{e c}^{A}+\Delta^{A}$ we have:

$$
\begin{equation*}
T A C_{y}^{3, A}=\left(1-\frac{B_{y, p r o j}^{A}-B_{e c}^{A}}{\Delta^{A}}\right) \times T A C_{y}^{3, A_{-} \text {before }}+\left(\frac{B_{y, p r o j}^{A}-B_{e c}^{A}}{\Delta^{A}}\right) \times T A C_{y}^{3, A^{*}} \tag{OMP.19}
\end{equation*}
$$

where $T A C_{y}^{3, A_{-} \text {before }}$ is the value output from equation (OMP.16), while $T A C_{y}^{3, A^{*}}$ is the value output from equation (OMP.17), and $B_{y, p r o j}^{A}$ is determined by equation (OMP.24).

We also specify the following:
$\alpha_{a d s} \quad$ - a control parameter which scales the anchovy TAC to meet target risk levels for sardine and anchovy.
$c_{m x i n c}^{a d s, A} \quad$ - the maximum amount by which the anchovy TAC is allowed to be increased within the additional sub-season.
$B_{1} \quad$ - a biomass-related control parameter determining the point at which the anchovy additional sub-season TAC can increase more rapidly (see Figure A.2).
$B_{2} \quad$ - a biomass-related control parameter determining the point at which the anchovy additional sub-season TAC reaches a maximum (see Figure A.2).
$T A B_{\text {ads }}^{S} \quad$ - the maximum fixed tonnage of juvenile sardine bycatch set aside for the additional sub-season each year.

Figure A.1. The logistic curve used to calculate the proportion of initial anchovy TAC that provides the initial sardine TAB (γ_{y}, Equation OMP.7). Curves for a lower value of B_{95} and centred on a lower value of B_{50} are also shown.

Figure A.2. The rule used for anchovy additional season TAC. The TAC increases linearly from $T A C^{*}=T A C_{y}^{3, A^{*}}-T A C_{y}^{2, A}$, where $T A C_{y}^{3, A^{*}}$ is that output from equations (OMP.15) and (OMP.16), at $B_{\text {proj }}=B_{1}$ to the maximum of 120000 t for $B_{p r o j} \geq B_{2}$.

[^0]: * MARAM (Marine Resource Assessment and Management Group), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701, South Africa.

[^1]: ${ }^{1} \mathrm{TAB}$ (assumed adult) with round herring only, initially set at 10000 t calculated as 12.5% of the predicted average round herring catch of 80000 t; subsequently decreased to 3500 t when considering historic bycatch had not been greater than 3500 t.
 ${ }^{2}$ A value of $\delta=0.85$, used since OMP- 02 , reflects the industry's desire for greater 'up-front' TAC allocation for planning purposes, even if this means some sacrifice in expected average TAC to meet the same risk criterion.
 ${ }^{3} \mathrm{~A}$ value of $p=0.7$ reflects the greater importance of the incoming recruits in the year's catch relative to the previous
 year's spawner biomass survey.
 ${ }^{4}$ Leaving $q=300$ unchanged facilitated easy comparison between the outputs from OMP- 02 and subsequent revised OMP candidates

[^2]: ${ }^{5}$ Draft OMP-13 assumes the additional season runs from October to December, rather than September to December as assumed for earlier OMPs.

[^3]: ${ }^{6}$ This estimate of recruitment is calculated using a cut-off length determined from modal progression analysis. In the event of this modal progression analysis being unable to detect a clear mode, a recruit cut-off (caudal) length of 10.5 cm for anchovy and 15.5 cm for sardine will be used. These are the cut-off lengths used historically and from which there has not been substantial deviation over a 10 year period (Coetzee pers. comm.).
 ${ }^{7}$ Only commercial catches comprising at least 50% anchovy with sardine bycatch are considered.

[^4]: ${ }^{8}$ During the simulation testing of the OMP, the assumption is made that the survey begins mid-May, i.e. $t_{y}^{A}=0.5$

