FISHERIES/2013/OCT/SWG-PEL/30

Draft Two-Area Harvest Control Rules for OMP-13

C.L. de Moor ${ }^{*}$ and D.S. Butterworth ${ }^{*}$

Correspondence email: carryn.demoor@uct.ac.za

Introduction

Interim OMP-13 v2 (de Moor and Butterworth 2013) allows for the recommendation of a single $\geq 14 \mathrm{~cm}$ directed sardine Total Allowable Catch (TAC), regardless of the number of sardine stocks. Candidate Management Procedures that allow for the recommendation of two sardine TACs, a west and south coast TAC, separated by Cape Agulhas, are also being developed. This document details the generalised Harvest Control Rules (HCRs) for Candidate MPs for OMP-13 allowing for one or two-area $\geq 14 \mathrm{~cm}$ directed sardine TACs.

Two-area $\geq \mathbf{1 4} \mathbf{c m}$ directed sardine TAC

The Appendix details the HCRs for South African sardine and anchovy allowing for the calculation of either one and two-area $\geq 14 \mathrm{~cm}$ directed sardine $\mathrm{TAC}(\mathrm{s})$. The Appendix text and/or equations that have been added or updated from Interim OMP-13 v 2 are highlighted in yellow.

In developing HCRs that calculate two $\geq 14 \mathrm{~cm}$ directed sardine TACs, based on observations of sardine November 1+ biomass west and east of Cape Agulhas, the following assumptions have been made:

- In setting the initial $<14 \mathrm{~cm}$ sardine TAB with anchovy, a conservative estimate of the anticipated ratio of juvenile sardine to juvenile anchovy in subsequent catches is used (equation OMP.7). For HCRs that calculate a single $\geq 14 \mathrm{~cm}$ directed sardine TAC, this ratio is based on the total observed sardine biomass. For HCRs that calculate two $\geq 14 \mathrm{~cm}$ directed sardine TACs, this ratio is still based on the total observed sardine biomass to allow for better comparisons between Candidate MPs. However, given that the sardine TAB with anchovy is mostly taken from sardine west of Cape Agulhas, future Candidate MPs should consider basing this ratio on the observed biomass west of Cape Agulhas only.
- If two area-specific $>14 \mathrm{~cm}$ sardine TACs are allocated, then two area-specific $<14 \mathrm{~cm}$ sardine TABs with $\geq 14 \mathrm{~cm}$ directed sardine will also be allocated.
- In simulation testing a two-area $\geq 14 \mathrm{~cm}$ directed sardine TAC on a single sardine stock, future November survey observations of sardine $1+$ biomass west of Cape Agulhas are generated as a proportion of the total observed $1+$ biomass, by drawing proportions from either a) the 1984-1999 observed proportions of $1+$ biomass west of Cape Agulhas, or b) the 2000-2011 observed proportions of $1+$ biomass west of Cape Agulhas.

[^0]- If sardine Exceptional Circumstances are declared, half the calculated $\geq 14 \mathrm{~cm}$ directed sardine TAC is allocated in December, with an increase in the sardine TAC dependent on the observed recruitment from the May recruit survey. This increase is dependent on the observed recruitment up to Cape Infanta, regardless of whether one or two $\geq 14 \mathrm{~cm}$ directed sardine TACs are allocated (equation OMP.16).
- The minimum TAC applicable for a single-area $\geq 14 \mathrm{~cm}$ directed sardine TAC in the absence of Exceptional Circumstances (90000 t) applies to the sum of the two area-specific $\geq 14 \mathrm{~cm}$ directed sardine TACs. The proportion of the minimum TAC allocated west/east of Cape Agulhas will be the same as that allocated prior to the implementation of the constraint (equation OMP.2b).
- The maximum TAC applicable for a single-area $\geq 14 \mathrm{~cm}$ directed sardine TAC (500000 t) applies to the sum of the two area-specific $\geq 14 \mathrm{~cm}$ directed sardine TACs. The proportion of the maximum TAC allocated west/east of Cape Agulhas will be the same as that allocated prior to the implementation of the constraint (equation OMP.2b).
- If the previous year's sum of the two area-specific $\geq 14 \mathrm{~cm}$ directed sardine TACs is below the 2 -tier threshold, the two area-specific $\geq 14 \mathrm{~cm}$ directed sardine TACs are restricted to decrease at most 20% from the previous year's area-specific TAC.
- If the previous year's sum of the two area-specific $\geq 14 \mathrm{~cm}$ directed sardine TACs is above the 2 -tier threshold, then the sum of the current year's two area-specific $\geq 14 \mathrm{~cm}$ directed sardine TACs is at most 20% below the 2 -tier threshold. The proportion of this TAC allocated west/east of Cape Agulhas will be the same as that allocated prior to the implementation of the constraint, unless in the prevailing circumstances that would lead to a seriously inappropriate allocation, in which case the matter would be dealt with under Exceptional Circumstances provisions ${ }^{1}$.
- A single threshold, at the same biomass use for the single-area TAC HCR, will be used to determine if Exceptional Circumstances apply for sardine for the area-specific TAC HCR. If the sum of the two survey observations of sardine 1+ biomass west and east of Cape Agulhas is below the threshold, then Exceptional Circumstances are declared. If Exceptional Circumstances are declared then the combined $\geq 14 \mathrm{~cm}$ directed sardine TAC is reduced quadratically (in the same manner as for the single-area TAC HCR); this combined TAC is then split by area in the same proportion as existed prior to the application of the Exceptional Circumstances rule (equation OMP.15b).
- Linear smoothing to the total $\geq 14 \mathrm{~cm}$ directed sardine $\mathrm{TAC}(\mathrm{s})$ is applied when the total survey estimate of $1+$ biomass (west and east of Cape Agulhas) is between the Exceptional Circumstances threshold and $\Delta^{S}=400000 \mathrm{t}$ above the Exceptional Circumstances threshold.

[^1]
In Summary

The method presented in this document is a first attempt at a set of HCRs for two-area $\geq 14 \mathrm{~cm}$ directed sardine TACs. Some discussion on the method used to constrain the $\geq 14 \mathrm{~cm}$ directed sardine TAC in each area is welcomed. The assumptions made in this document may result in discontinuity in the separate west coast and south coast directed sardine TACs when some constraints are applied. These discontinuities will be addressed as best as is possible, once decisions have been reached on how constraints will be applied given two-area directed sardine TAC HCRs. It is expected discussion on area-specific Exceptional Circumstances provisions may be warranted. In addition, the current rule used for linear smoothing is not satisfactory, and may require area-specific Exceptional Circumstances provisions if different control parameters for the directed sardine TAC west and south of Cape Agulhas will be used.

References

de Moor, C.L., and Butterworth, D.S. 2013. Interim OMP-13 v2. DAFF: Branch Fisheries Document FISHERIES/2013/JUL/SWG-PEL/15. 18pp.

Rademeyer, R.A., Butterworth, D.S., and Plaganyi, E.E. 2008. A history of recent bases for management and the development of a species-combined Operational Management Procedure for the South African hake resource. African Journal of Marine Science 30(2):291-310.

Table 1. Definitions of control parameters and constraints used in OMP-02, OMP-04, OMP-08, Interim OMP-13 and Interim OMP-13v2 together with their values. All mass-related quantities are given in thousands of tons. Values for Interim OMP-13v2 which differ from OMP-08 are given in bold face.

	Key Control Parameters	OMP-02	OMP-04	OMP-08	Interim OMP-13	$\begin{gathered} \hline \text { Interim } \\ \text { OMP13v2 } \end{gathered}$
β	$\geq 14 \mathrm{~cm}$ directed sardine catch control parameter	0.1865	0.14657	0.097	0.090	0.090
$\alpha_{n s}$	Directed anchovy catch control parameter for normal season	0.16655	0.73752	0.78	0.321	0.871
$\alpha_{\text {ads }}$	Directed anchovy catch control parameter for additional season	0.99956	1.47504	1.17	0.4815	N/A
	Fixed TABs	OMP-02	OMP-04	OMP-08	Interim OMP-13	Interim OMP13v2
$T A B_{\text {big }}^{S}$	Fixed $>14 \mathrm{~cm}$ sardine bycatch	10^{2}	10^{1}	$3.5{ }^{1}$	7	7
$T A B^{A}$	Fixed anchovy bycatch for sardine only right holders	N/A	N/A	N/A	0.5	0.5
$T A B_{y, s m a l l, r h}^{S}$	Fixed $\leq 14 \mathrm{~cm}$ sardine bycatch with round herring	N/A	N/A	N/A	1.0	1.0
	Fixed Control Parameters	OMP-02	OMP-04	OMP-08	Interim OMP-13	Interim OMP13v2
δ	Scale-down factor applied to initial anchovy TAC	$0.85{ }^{3}$	0.85	0.85	0.85	0.85
p	Weighting given to recruitment survey in anchovy TAC	0.7^{4}	0.7	0.7	0.7	0.7
q	Relates to average TAC under OMP-99 if $\alpha_{n s}=1$	$300{ }^{5}$	300	300	300	300
$\bar{B}_{\text {Nov }}^{A}$	Historic average 1984 to 1999 index of anchovy abundance from the November spawner biomass surveys		2149	1380	1380	1380
$\bar{N}_{\text {rec } 0}^{A}$	Average 1985 to 1999 observed anchovy recruitment in May, back-calculated to November of the previous year	N/A	N/A	$\begin{gathered} 198 \\ \text { billion } \end{gathered}$	$\begin{gathered} 180 \\ \text { billion } \end{gathered}$	$\begin{gathered} 217 \\ \text { billion } \end{gathered}$
ϖ	Estimate of the percentage of $\leq 14 \mathrm{~cm}$ sardine bycatch in the $>14 \mathrm{~cm}$ sardine catch	N/A	N/A	N/A	0.07	0.07
γ_{y}	Range within which initial estimate of juvenile sardine : anchovy ratio is set, dependent upon observed sardine biomass	0.1	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2
$\gamma_{\text {max }}$	Maximum of the logistic curve for γ_{y}	N/A	0.1	0.1	0.1	0.1
B_{50}	Biomass of sardine where the logistic curve for γ_{y} reaches 50\%	N/A	2000	2000	2000	2000

[^2]Table 1 (continued).

	Constraints	OMP-02	OMP-04	OMP-08	Interim OMP-13	$\begin{gathered} \text { Interim } \\ \text { OMP13v2 } \end{gathered}$
B_{95}	Biomass of sardine where the logistic curve for γ_{y} reaches 95%	N/A	3178	3178	3178	3178
$c_{\text {mntac }}^{S}$	Minimum $\geq 14 \mathrm{~cm}$ directed sardine TAC	90	90	90	90	90
$c_{\text {mntac }}^{A}$	Minimum normal season anchovy TAC	150	150	120	120	120
$c_{\text {mxtac }}^{S}$	Maximum $\geq 14 \mathrm{~cm}$ directed sardine TAC	250	500	500	500	500
$c_{\text {mxtac }}^{A}$	Maximum total anchovy TAC	600	600	600	450	450
$c_{\text {tier }}^{S}$	Two-tier threshold for $\geq 14 \mathrm{~cm}$ directed sardine TAC	N/A	240	255	255	255
$c_{\text {tier }}^{A}$	Two-tier threshold for normal season anchovy TAC	N/A	330	330	330	330
$c_{m x d n}^{S}$	Maximum proportion by which $\geq 14 \mathrm{~cm}$ directed sardine TAC can be reduced annually	0.20	0.15	0.20	0.20	0.20
$c_{m x d n}^{A}$	Maximum proportion by which normal season anchovy TAC can be reduced annually	0.30	0.25	0.25	0.25	0.25
$c_{\text {mxinc }}^{n s, A}$	Maximum increase in normal season anchovy TAC	150	200	150	150	N/A
$c_{\text {mxinc }}^{a d s, A}$	Maximum additional season anchovy TAC	100	150	120	120	N/A
$T A B_{\text {ads }}^{S}$	Maximum sardine bycatch during the additional season	2	2	2	$1.5{ }^{6}$	N/A
$B_{e c}^{S}$	Threshold at which Exceptional Circumstances are invoked for sardine	150	250	300	300	300
$B_{e c}^{A}$	Threshold at which Exceptional Circumstances are invoked for anchovy	400	400	400	400	600
Δ^{S}	threshold above $B_{e c}^{S}$ at which linear smoothing is introduced before sardine exceptional circumstances are declared (to ensure continuity)	N/A	500	500	400	400
Δ^{A}	threshold above $B_{e c}^{A}$ at which linear smoothing is introduced before anchovy exceptional circumstances are declared (to ensure continuity)	N/A	N/A	100	100	100
B_{1}	threshold above which the anchovy additional sub-season TAC can increase more rapidly	N/A	N/A	1000	1000	N/A
B_{2}	threshold above which the anchovy additional sub-season TAC reaches a maximum	N/A	N/A	1500	1500	N/A
x^{S}	the proportion of $B_{e c}^{S}$ below which sardine TAC is zero.	0	0	0.25	0.25	0.25
x^{A}	the proportion of $B_{e c}^{A}$ below which anchovy TAC is zero.	0	0.25	0.25	0.25	0.25
$R_{\text {crit }}$	sardine recruitment threshold above which the maximum possible mid-year increase in sardine TAC under exceptional circumstances is achieved	N/A	N/A	17.38	16.48	16.48

[^3] as assumed for earlier OMPs.

Table 2. The data required as input to the Candidate MPs for OMP-13 formulae to provide the $\geq 14 \mathrm{~cm}$ directed sardine $\mathrm{TAC}(\mathrm{s})$ and initial anchovy TAC and sardine TAB recommendations for year y in December of year $y-1$, and to set the revised and final anchovy TAC and sardine TAB recommendations in June of year y.

[^4]
Appendix: Interim OMP-13v2 Harvest Control Rules

In this Appendix, catches-at-age are given in numbers of fish (in billions), whereas the TACs and TABs are given in thousands of tons. Sardine and anchovy total allowable catches (TACs) and sardine total allowable bycatches (TABs) are set at the start of the year and the latter two are revised during the year (or all three if Exceptional Circumstances apply for sardine).

Initial TACs / TAB (January)

The $\geq 14 \mathrm{~cm}$ directed sardine $\mathrm{TAC}(\mathrm{s})$ and initial directed anchovy TAC and TAB for sardine bycatch are based on the results of the November biomass survey. These limits are announced prior to the start of the pelagic fishery at the beginning of each year.

The $\geq 14 \mathrm{~cm}$ directed sardine TAC(s) is set at a proportion of the previous year's November $1+$ biomass index of abundance, but subject to the constraints of a minimum and a maximum value. If the previous year's TAC(s) is below the 'two-tier' threshold, then the TAC(s) is subject to a maximum percentage drop from the previous year's TAC(s). If it is above this threshold, any reduction in TAC(s) is limited only by a lower bound of the corresponding threshold less the maximum percentage drop.

The directed anchovy initial TAC is based on how the most recent November biomass survey estimate of abundance relates to the historic (non-peak) average between 1984 and 1999. In the absence of further information, which will become available after the May recruitment survey, this initial TAC assumes the forthcoming recruitment (which will form the bulk of the catch) will be average. A 'scale-down' factor, δ, is therefore introduced to provide a buffer against possible poor recruitment. The anchovy TAC is subject to similar constraints as apply for sardine.

A fixed anchovy TAB, TAB ${ }^{A}$, for sardine only right holders has been introduced in OMP-13 (see Table 1).

A fixed $>14 \mathrm{~cm}$ sardine $T A B, T A B_{b i g}^{S}$, consisting of mainly adult sardine bycatch with round herring and to a lesser extent with anchovy has been introduced in OMP-13 (replacing the "adult sardine bycatch with round herring" TAB in OMP-08) (see Table 1).

A new $<14 \mathrm{~cm}$ sardine TAB has been introduced in OMP-13. This consists of a fixed allocation for bycatch with round herring, $T A B_{y, s m a l l, r h}^{S}$, and an allocation for small sardine bycatch in the $>14 \mathrm{~cm}$ directed sardine landings, set proportional to the directed sardine TAC(s).

The final TAB is a $\leq 14 \mathrm{~cm}$ sardine TAB with anchovy, and is set proportional to the anchovy TAC.

Single-area TAC:

$\geq 14 \mathrm{~cm}$ directed sardine TAC: $\quad T A C_{y}^{S}=\beta B_{y-1, N o v}^{o b s, S}$
(OMP.1a)
Subject to:

$$
\begin{align*}
\max \left\{\left(1-c_{\text {mxdn }}^{S}\right) T A C_{y-1}^{S} ; c_{\text {mntac }}^{S}\right\} \leq T A C_{y}^{S} \leq c_{\text {mxac }}^{S} & \text { if } T A C_{y-1}^{S} \leq c_{\text {tier }}^{S} \\
\max \left\{\left(1-c_{\text {mxdn }}^{S}\right) c_{\text {tier }}^{S} ; c_{\text {mntac }}^{S}\right\} \leq T A C_{y}^{S} \leq c_{\text {mxtac }}^{S} & \text { if } T A C_{y-1}^{S}>c_{\text {tier }}^{S} \tag{OMP.2a}
\end{align*}
$$

Two-area TACs:

$\geq 14 \mathrm{~cm}$ directed sardine TAC: $\quad T A C_{\text {area, },}^{S}=\beta_{\text {area }} B_{\text {area, } y-1, N o v}^{\text {obs } S}$

Subject to:

$T A C_{\text {area, }, ~}^{S}=\frac{T A C_{\text {area, }, y}^{S}}{\sum_{\text {area }} T A C_{\text {area, }, y}^{S}} c_{\text {mntac }}^{S} \quad$ if $\sum_{\text {area }} T A C_{\text {area, },}^{S}<c_{\text {mntac }}^{S}$
$T A C_{\text {area, }, ~}^{S}=\frac{T A C_{\text {area, } y}^{S}}{\sum_{\text {area }} T A C_{\text {area, }, y}^{S}} c_{\text {mxtac }}^{S} \quad$ if $\sum_{\text {area }} T A C_{\text {area, },}^{S}>c_{\text {mxtac }}^{S}$
$T A C_{\text {area, }, y}^{S} \geq\left(1-c_{m \times d n}^{S}\right) T A C_{\text {area, } y-1}^{S} \quad$ if $\sum_{\text {area }} T A C_{\text {area, } y}^{S}<\left(1-c_{m x d n}^{S}\right) c_{\text {tier }}^{S}$

Initial directed anchovy TAC: $\quad T A C_{y}^{1, A}=\alpha_{n s} \delta q\left(p+(1-p) \frac{B_{y-1}^{o b s, A}}{\bar{B}_{N o v}^{A}}\right)$
Subject to: $\begin{array}{cl}\max \left\{\left(1-c_{m x d d}^{A}\right) T A C_{y-1}^{2, A} ; c_{\text {mntac }}^{A}\right\} \leq T A C_{y}^{1, A} \leq c_{\text {mxtac }}^{A} & \text { if } T A C_{y-1}^{2, A} \leq c_{\text {tier }}^{A} \\ \max \left\{\left(1-c_{\text {mxdn }}^{A}\right) c_{\text {tier }}^{A} ; c_{\text {mntac }}^{A}\right\} \leq T A C_{y}^{1, A} \leq c_{\text {mxtac }}^{A} & \text { if } T A C_{y-1}^{2, A}>c_{\text {tier }}^{A}\end{array}$
(OMP.4)

Single-area TAC:

$<14 \mathrm{~cm}$ sardine TAB with directed $\geq 14 \mathrm{~cm}$ sardine:

$$
\begin{equation*}
T A B_{y, \text { small }}^{S}=\omega T A C_{y}^{S} \tag{OMP.5a}
\end{equation*}
$$

Two-area TACs:

$<14 \mathrm{~cm}$ sardine TAB with directed $\geq 14 \mathrm{~cm}$ sardine:

$$
\begin{equation*}
T A B_{\text {area, }, \text { small }}^{S}=\omega T A C_{\text {area, }, y}^{S} \tag{OMP.5b}
\end{equation*}
$$

Initial $<14 \mathrm{~cm}$ sardine TAB with anchovy: $T A B_{y, a n c h}^{1, S}=\gamma_{y} T A C_{y}^{1, A}$
where:

$$
\begin{equation*}
\gamma_{y}=0.1+\frac{\gamma_{\max }}{1+\exp \left(-\ln (19) \frac{\left(B_{y-1, N}^{S, o b s}-B_{50}\right)}{\left(B_{95}-B_{50}\right)}\right)} . \tag{OMP.6}
\end{equation*}
$$

Here γ_{y} increases according to a logistic curve from 10% in years in which the survey estimated total sardine November 1+ biomass, $B_{y-1, N}^{S, o b s}$, is poor to average, towards a maximum when sardine biomass is higher (Figure A.1).

To maintain continuity in the directed sardine and initial anchovy TACs as the Exceptional Circumstances thresholds (see below), $B_{e c}^{S}$ and $B_{e c}^{A}$, are approached from above and below, the following linear smoothing is applied.

Single-area TAC:

If $B_{e c}^{S} \leq B_{y-1, N}^{o b s, S} \leq B_{e c}^{S}+\Delta^{S}$ we have:
$T A C_{y}^{S}=\left(1-\frac{B_{y-1, N}^{o b s, S}-B_{e c}^{S}}{\Delta^{S}}\right) \times T A C_{y}^{S-E C}+\left(\frac{B_{y-1, N}^{o b s, S}-B_{e c}^{S}}{\Delta^{S}}\right) \times T A C_{y}^{S}$
(OMP.8a)
where $T A C_{y}^{S}{ }_{-} E C$ is the value output from equation (OMP.15a) when $B_{y-1, N}^{o b s, S}=B_{e c}^{S}$, while $T A C_{y}^{S}$ is the value output from equations (OMP 1.a and OMP.2a) when $B_{y-1, N}^{o b s, S}=B_{e c}^{S}+\Delta^{S}$.

Two-area TACs:

If $B_{e c}^{S} \leq \sum_{\text {area }} B_{\text {area, } y-1, N}^{o b s, S} \leq B_{e c}^{S}+\Delta^{S}$ we have:
$T A C_{\text {area }, y}^{S}=\frac{T A C_{\text {area }, y}^{S^{*}}}{\sum_{\text {area }} T A C_{\text {area }, y}^{S^{*}}}\left\{\left(1-\frac{\sum_{\text {area }} B_{\text {area }, y-1, N}^{o b s, B_{e c}^{S}}}{\Delta^{S}}\right) \times \sum_{\text {area }} T A C_{\text {area }, y}^{S-E C}+\left(\frac{\sum_{\text {area }}^{B_{\text {area }, y-1, N}^{o b s, S}-B_{e c}^{S}}}{\Delta^{S}}\right) \times \sum_{\text {area }} T A C_{\text {area }, y}^{S}\right\}$
(OMP.8b)
where $T A C_{a r e a, y}^{S^{*}}$ is the output from equation (OMP.2b), $T A C_{\text {area,y }}^{S_{-} E C}$ is the value output from equation (OMP.15b) when $\sum_{\text {area }} B_{\text {area, } y-1, N}^{o b s, S}=B_{e c}^{S}$, while $T A C_{y}^{S}$ is the value output from equation (OMP.1b and
OMP.2b) when $\sum_{\text {area }} B_{\text {area }, y-1, N}^{\text {obs }, S}=B_{e c}^{S}+\Delta^{S}$.
If $B_{e c}^{A} \leq B_{y-1, N}^{o b s, A} \leq B_{e c}^{A}+\Delta^{A}$ we have:

$$
\begin{equation*}
T A C_{y}^{1, A}=\left(1-\frac{B_{y-1, N}^{o b s, A}-B_{e c}^{A}}{\Delta^{A}}\right) \times T A C_{y}^{1, A_{-} E C}+\left(\frac{B_{y-1, N}^{o b s, A}-B_{e c}^{A}}{\Delta^{A}}\right) \times T A C_{y}^{1, A} \tag{OMP.9}
\end{equation*}
$$

where $T A C_{y}^{1, A_{-} E C}$ is the value output from equation (OMP.17) when $B_{y-1, N}^{o b s, A}=B_{e c}^{A}$, while $T A C_{y}^{1, A}$ is the value output from equation (OMP.4) when $B_{y-1, N}^{o b s, A}=B_{e c}^{A}+\Delta^{A}$.

In the above equations the symbols used are as follows. See Table 1 for fixed values:
$B_{y, N}^{o b s, S}$

- the observed estimate of sardine abundance from the hydroacoustic biomass survey in November of year y.
β
$c_{\text {tier }}^{A} \quad-$ the two-tier threshold for directed anchovy TAC.
$c_{m x d n}^{A} \quad$ - the maximum proportional amount by which the directed anchovy TAC can be reduced from one year to the next.
$\varpi \quad$ - an estimate of the maximum percentage of $\leq 14 \mathrm{~cm}$ sardine bycatch in the $>14 \mathrm{~cm}$ sardine catch.
$\gamma_{y} \quad-a$ conservative estimate of the anticipated ratio of juvenile sardine to juvenile anchovy in subsequent catches.
$\gamma_{\max } \quad$ - maximum of the logistic curve for γ_{y}.
$B_{50} \quad$ - biomass where the logistic curve for γ_{y} reaches 50%.
$B_{95} \quad$ - biomass where the logistic curve for γ_{y} reaches 95%.
$B_{e c}^{S} \quad$ - the biomass threshold below which Exceptional Circumstances apply for sardine.
$B_{e c}^{A} \quad-$ the biomass threshold below which Exceptional Circumstances apply for anchovy.
$\Delta^{S} \quad$ - the threshold above the Exceptional Circumstances threshold, $B_{e c}^{S}$, below which the sardine
TAC is smoothed until $B_{e c}^{S}$ is reached.
$\Delta^{A} \quad-$ the threshold above the Exceptional Circumstances threshold, $B_{e c}^{A}$, below which the anchovy
TAC is smoothed until $B_{e c}^{A}$ is reached.

Revised TACs / TAB (June)

The anchovy TAC and sardine TAB midyear revisions are based on the most recent November and now also recruit surveys. As the estimate of recruitment is now available, the 'scale-down' factor, δ, is no longer required to set the anchovy TAC. The additional constraints include ensuring that the revised anchovy TAC is not less than the initial anchovy TAC.

The revised $<14 \mathrm{~cm}$ sardine TAB with anchovy is calculated using an estimate of the ratio, r_{y}, of juvenile sardine to anchovy, provided this ratio is larger than γ_{y}, which was used to set the initial TAB.

Revised anchovy TAC: $\quad T A C_{y}^{2, A}=\alpha_{n s} q\left(p \frac{N_{y-1, \text { rec } 0}^{A}}{\bar{N}_{\text {reco } 0}^{A}}+(1-p) \frac{B_{y-1, N}^{o b s, A}}{\bar{B}_{\text {Nov }}^{A}}\right)$
(OMP.10)

Subject to:

$$
\begin{array}{rll}
\max \left\{T A C_{y}^{1, A} ;\left(1-c_{m x d n}^{A}\right) T A C_{y-1}^{2, A}\right\} \leq T A C_{y}^{2, A} \leq c_{m x t a c}^{A} & T A C_{y-1}^{2, A} \leq c_{\text {tier }}^{A} \\
\quad \max \left\{T A C_{y}^{1, A} ;\left(1-c_{m x d n}^{A}\right) c_{\text {tier }}^{A}\right\} \leq T A C_{y}^{2, A} \leq c_{m x t a c}^{A} & T A C_{y-1}^{2, A}>c_{\text {tier }}^{A} \tag{OMP.11}
\end{array}
$$

Revised $<14 \mathrm{~cm}$ sardine TAB with anchovy:

$$
\begin{equation*}
T A B_{y, a n c h}^{2, S}=\lambda_{y} T A C_{y}^{1, A}+r_{y}\left(T A C_{y}^{2, A}-T A C_{y}^{1, A}\right) \tag{OMP.12}
\end{equation*}
$$

Where:

$$
\lambda_{y}=\max \left\{\gamma_{y}, r_{y}\right\}
$$

As for the initial TAC, continuity in the revised anchovy TAC as the Exceptional Circumstances thresholds are approached from above and below, is maintained by applying the following linear smoothing.

If $B_{e c}^{A} \leq B_{y, p r o j}^{A} \leq B_{e c}^{A}+\Delta^{A}$ we have:

$$
\begin{equation*}
T A C_{y}^{2, A}=\left(1-\frac{B_{y, p r o j}^{A}-B_{e c}^{A}}{\Delta^{A}}\right) \times T A C_{y}^{2, A_{-} E C}+\left(\frac{B_{y, p r o j}^{A}-B_{e c}^{A}}{\Delta^{A}}\right) \times T A C_{y}^{2, A} \tag{OMP.13}
\end{equation*}
$$

where $T A C_{y}^{2, A_{-} E C}$ is the value output from equation (OMP.22) when $B_{y, p r o j}^{A}=B_{e c}^{A}$, while $T A C_{y}^{2, A}$ is the value output from equation (OMP.11) when $B_{y, p r o j}^{A}=B_{e c}^{A}+\Delta^{A}$, and $B_{y, p r o j}^{A}$ is determined by equation (OMP.19).

Note that by construction $T A B_{y}^{2, S} \geq T A B_{y}^{1, S}$ as $\lambda_{y} \geq \gamma_{y}$ and $T A C_{y}^{2, A} \geq T A C_{y}^{1, A}$. In addition to the previous definitions, we have:
$N_{y-1, r e c 0}^{A} \quad$ - the simulated estimate of anchovy recruitment from the recruitment survey in year $y, N_{y, r}^{o b s, A}$ ${ }^{10}$, back-calculated to 1 November $y-1$ by taking natural and fishing mortality into account (equation (OMP.14) below).
$\bar{N}_{\text {rec } 0}^{A} \quad$ - the average 1985 to 1999 observed anchovy recruitment in May, back-calculated (using equation (A.14)) to November of the previous year.
$r_{y}=\frac{1}{2}\left(r_{y, \text { sur }}+r_{y, \text { com }}\right)$

- the ratio of juvenile sardine to anchovy "in the sea" during May in year y, calculated from the recruit survey and the sardine bycatch to anchovy ratio in the commercial catches ${ }^{11}$ during May.

The anchovy TAC equations require that $N_{y, r}^{o b s, A}$, the recruitment numbers estimated in the survey, be backcalculated to November of the previous year, assuming a fixed value of 1.2 year ${ }^{-1}$ for M_{j}^{A}. The backcalculated recruitment numbers are calculated as follows:
$N_{y-1, r e c 0}^{A}=\left(N_{y, r}^{o b s, A} e^{t_{y}^{A} \times 1.2 / 12}+C_{y, 0 b s}^{A}\right) e^{0.5 \times 1.2}$
In the above equation we have
$C_{y, 0 b s}^{A} \quad$ - the observed juvenile anchovy landed by number (in billions) from the $1^{\text {st }}$ of November year $y-1$ to the day before the recruit survey commences in year y
$t_{y}^{A} \quad-$ the timing of the anchovy recruit survey in year y (number of months) after the $1^{\text {st }}$ of May year y.

Exceptional Circumstances

Sardine directed TAC

Exceptional Circumstances for the sardine directed TAC apply if:

[^5]\[

$$
\begin{array}{ll}
B_{y-1, N}^{o b s, S}<B_{e c}^{S} & \text { if a single sardine TAC is allocated, or } \\
\sum_{\text {area }} B_{\text {area, } y-1, N}^{o b s, S}<B_{e c}^{S} & \text { if two area-specific sardine TACs are allocated, }
\end{array}
$$
\]

in which case the TAC under Exceptional Circumstances is calculated as follows. Only a portion (half) of the directed sardine TAC is awarded with the initial TACs, with a revised TAC in June dependent on the observed May sardine recruitment (see Figure A.2):

Single area TAC:

Initial TAC: $T A C_{y, \text { ninit }}^{S}=0.5 \times\left\{\begin{array}{ll}0 & \text { if } \frac{B_{y-1, N}^{o b s, S}}{B_{e c}^{S}}<x^{S} \\ T A C_{y}^{S}-\text { beforoe } \\ \left(\frac{B_{y-1, N}^{\text {obs,S }}}{B_{e c}^{S}}-x^{S}\right. \\ 1-x^{S}\end{array}\right)^{2} \quad$ if $x^{S}<\frac{B_{y-1, N}^{\text {obs,S }}}{B_{e c}^{S}}<11$
(OMP.15a)

Revised TAC: TAC $y_{y}^{S}= \begin{cases}T A C_{y, \text { init }}^{S}+1.2 \times \frac{N_{y, r}^{\text {obs,S }}}{R_{\text {crit }}} T A C_{y, \text { init }}^{S} & \text { if } N_{y, r}^{o b s, S} \leq R_{\text {crit }} \\ T A C_{y, \text { nitit }}^{S}+1.2 \times T A C_{y, \text { nit }}^{S} & \text { if } N_{y, r}^{\text {obs } S}>R_{\text {crit }}\end{cases}$
(OMP.16a)
where $T A C_{y}^{S}{ }^{S}$ before $=\beta B_{y-1, N}^{\text {obs,S }}$, subject to $c_{\text {mntac }}^{S} \leq T A C_{y}^{S-b e f o r e} \leq c_{m x t a c}^{S}$. The rule allows for the TAC to be set to zero if the survey estimated sardine biomass falls below x^{s} of the threshold (see Table 1). Further we have:
$R_{\text {crit }} \quad$ - the level of sardine recruitment required in order to achieve the maximum possible mid-year increase in sardine TAC under Exceptional Circumstances (see Figure A. 2 and Table 1).

Two-area TACs:

Initial TAC:

(OMP.15b)
Revised TAC: $\quad T A C_{\text {area, }, y}^{S}= \begin{cases}T A C_{\text {area, }, \text {,init }}^{S}+1.2 \times \frac{N_{y, r}^{\text {obs } S}}{R_{\text {crit }}} T A C_{\text {area, }, \text {,init }}^{S} & \text { if } N_{y, r}^{\text {obs,S }} \leq R_{\text {crit }} \\ T A C_{\text {area, }, \text {, init }}^{S}+1.2 \times T A C_{\text {area, }, \text {,init }}^{S} & \text { if } N_{y, r}^{\text {obs,S }}>R_{\text {crit }}\end{cases}$
where $T A C_{y}^{S-b e f o r e}=\sum_{\text {area }} \beta_{\text {area }} B_{\text {area, } y-1, N o v}^{\text {obs } S}$, subject to $c_{\text {mntac }}^{S} \leq T A C_{y}^{S} y^{\text {beforere }} \leq c_{\text {mxtac }}^{S}$.

Initial Anchovy TAC

Exceptional Circumstances for the initial anchovy TAC apply if

$$
B_{y-1, N}^{o b s, A}<B_{e c}^{A}
$$

in which case the TAC under Exceptional Circumstances is calculated as follows:

(OMP.17)
where $T A C_{y}^{1, A-\text { before }}=\alpha_{n s} \delta q\left(p+(1-p) \frac{B_{y-1, N}^{o b s, A}}{\bar{B}_{N o v}^{A}}\right)$, subject to $c_{m n t a c}^{A} \leq T A C_{y}^{1, A_{-} \text {before }} \leq c_{m x t a c}^{A}$. The rule allows for the TAC to be set to zero if the survey estimated anchovy biomass falls below x^{A} of the threshold (see Table 1).

Revised Anchovy TAC

The results of the most recent November and recruit surveys are projected forward, taking natural and anticipated fishing mortality into account, in order to provide a proxy ($B_{y, p r o j}^{A}$) for the forthcoming November survey, and hence have a basis for invoking Exceptional Circumstances, if necessary. Define

$$
T A C_{y}^{2, A_{-} \text {before }}=\alpha_{n s} q\left(p \frac{N_{y-1, \text { rec } 0}^{A}}{\bar{N}_{\text {rec } 0}^{A}}+(1-p) \frac{B_{y-1, N}^{\text {obss A }}}{\bar{B}_{\text {Nov }}^{A}}\right) \text {, subject to } \max \left\{T A C_{y}^{1, A} ; c_{m n t a c}^{A}\right\} \leq T A C_{y}^{2, A_{-} \text {before }} \leq c_{m x t a c}^{A} \text {, a }
$$

projected anchovy biomass, $B_{y, p r o j 0}^{A}$, is calculated as follows:

$$
\begin{equation*}
B_{y, p r o j 0}^{A}=\max \text { of }\left\{0 ;\left(N_{y, r}^{o b s, A}-\left[\frac{T A C_{y}^{2, A}-b \text { before }}{}+T A B^{A}-\bar{w}_{1 c}^{A} C_{y, 1}^{A}-C_{y, 0 b s}^{A}\right]\right) e^{-\left(6-t_{y}\right)^{* 1,2 / 12}} \bar{w}_{1}^{A}\right\} . \tag{OMP.18}
\end{equation*}
$$

Calculate $B_{y, p r o j}^{A}$ as follows:

$$
\begin{equation*}
B_{y, p r o j}^{A}=\left(\frac{B_{y-1, N}^{o b s, A}}{\bar{w}_{1}^{A}} e^{-5^{*} 1.2 / 12}-C_{y, 1}^{A}\right) e^{-7 \times 1.2 / 12} \bar{w}_{2}^{A}+B_{y, p r \rho j 0}^{A} \tag{OMP.19}
\end{equation*}
$$

If $B_{y, p r o j}^{A}<B_{e c}^{A}$, then Exceptional Circumstances apply. The recruit survey result in year y (in numbers) that would be sufficient to yield a $B_{y, p r o j}^{A}$ value of exactly $B_{e c}^{A}$ is calculated as follows:
$\theta=\frac{\left[B_{e c}^{A}-\left(B_{y, p r o j}^{A}-B_{y, p r o j 0}^{A}\right)\right]}{\bar{w}_{1}^{A}} e^{\left(6-t_{y}\right)^{*} 1.2 / 12}+\frac{T A C_{y}^{2, A_{-} \text {before }}+T A B^{A}-\bar{w}_{1 c}^{A} C_{y, 1}^{A}}{\bar{w}_{0 c}^{A}}-C_{y, 0 b s}^{A}$
This is back-calculated to November of the previous year in the same way as equation (A.14) during OMP implementation:

$$
\begin{equation*}
N_{y-1, r e c 0}^{A^{*}}=\left(\theta e^{t_{y}^{A} \times 1.2 / 12}+C_{y, 0 b s}^{A}\right) e^{6 \times 1.2 / 12} \tag{OMP.21}
\end{equation*}
$$

In the above equations we have:
$C_{y, 1}^{A} \quad$ - the observed anchovy catch at age 1 landed by number (in billions) from the $1^{\text {st }}$ of November year $y-1$ to the day before the recruit survey commences in year y.
$\bar{w}_{a}^{A} \quad$ - average historic anchovy weight-at-age a in November.
$\bar{w}_{a c}^{A} \quad$ - average historic anchovy catch weight-at-age a.

The revised anchovy TAC is calculated by reducing $T A C_{y}^{2, A_{-} \text {before }}$ by the ratio (squared) of $T A C_{y}^{2, A_{-} \text {before }}$ calculated with the annual recruitment for year y to $T A C_{y}^{2, A}$ calculated with θ, thus providing a means to reduce the TAC fairly rapidly when the Exceptional Circumstances threshold is surpassed. The rule allows for the TAC to be set to zero (or to the initial anchovy TAC, if greater than zero) if the survey estimated anchovy recruitment and biomass falls below a quarter of the threshold:

(OMP.22)

Figure A.1. The logistic curve used to calculate the proportion of initial anchovy TAC that provides the initial sardine TAB (γ_{y}, Equation OMP.7). Curves for a lower value of B_{95} and centred on a lower value of B_{50} are also shown.

Figure A.2. The proportion of the initial directed sardine TAC that is awarded in the mid-year revision to the directed sardine TAC if Exceptional Circumstances are declared. The historic (May 1984-2011) average observed May sardine recruitment is 13.74 billion recruits. For OMP-13, $R_{\text {crit }}=16.48$ billion, such that the mid-year revision is the same as the initial TAC when observed recruitment from the May survey is average.

[^0]: * MARAM (Marine Resource Assessment and Management Group), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701, South Africa.

[^1]: ${ }^{1}$ These are the Exceptional Circumstances provisions as detailed in Appendix 2 of Rademeyer et al. (2008) which would initiate an OMP review.

[^2]: ${ }^{2} \mathrm{TAB}$ (assumed adult) with round herring only, initially set at 10000 t calculated as 12.5% of the predicted average round herring catch of 80000 t; subsequently decreased to 3500 t when considering historic bycatch had not been greater than 3500 t .
 ${ }^{3}$ A value of $\delta=0.85$, used since OMP- 02 , reflects the industry's desire for greater 'up-front' TAC allocation for planning purposes, even if this means some sacrifice in expected average TAC to meet the same risk criterion.
 ${ }^{4}$ A value of $p=0.7$ reflects the greater importance of the incoming recruits in the year's catch relative to the previous year's biomass survey.
 ${ }^{5}$ Leaving $q=300$ unchanged facilitated easy comparison between the outputs from OMP- 02 and subsequent revised OMP candidates

[^3]: ${ }^{6}$ Interim OMP-13 assumed the additional season runs from October to December, rather than September to December

[^4]: ${ }^{7}$ Either a single value for the full surveyed area (single-area directed sardine TAC) or two values, separated at Cape Agulhas (two-area directed sardine TACs)
 ${ }^{8}$ Needed only if sardine Exceptional Circumstances are declared in December of year $y-1$.
 ${ }^{9}$ Monthly cut-off lengths are used to split the anchovy catch into juveniles and adults. The monthly cut-off lengths for November to March are given in de Moor et al. (2012), while the monthly cut-off lengths for April, May and June (if necessary) are dependent on the recruit cut-off length used for the recruit survey in year y.

[^5]: ${ }^{10}$ This estimate of recruitment is calculated using a cut-off length determined from modal progression analysis. In the event of this modal progression analysis being unable to detect a clear mode, a recruit cut-off (caudal) length of 10.5 cm for anchovy and 15.5 cm for sardine will be used. These are the cut-off lengths used historically and from which there has not been substantial deviation over a 10 year period (Coetzee pers. comm.).
 ${ }^{11}$ Only commercial catches comprising at least 50% anchovy with sardine bycatch are considered.

