An evaluation on four potential *SLAs* for West Greenland humpback and bowhead whales using the agreed evaluation and robustness trials

A. Brandão and D.S. Butterworth

MARAM (Marine Resources Assessment and Management Group) Department of Mathematics and Applied Mathematics University of Cape Town, Rondebosch 7701, South Africa

ABSTRACT

In what is an initial analysis, four possible *SLAs* are run for the evaluation and robustness trials developed at the Fourth AWMP Workshop for West Greenland humpbacks and bowhead whales. A simple integrative approach to provide a ready coarse comparison of the performance of each across all these trials is put forward, based on the lower 5%-iles of the N9 (need satisfaction) and D1 (depletion) performance statistics. There was generally little to choose between the four *SLAs* considered in terms of performance. There was a qualitative difference between the two species: for humpback the *SLA* using the most recent abundance estimate only was preferred, whereas for bowheads the preference was to use all estimates with little downweighting for time since the survey. However, none of the *SLAs* considered performed adequately in terms of resource depletion for the lowest MSYR₁₊ values considered.

INTRODUCTION

This paper provides results from the application of the software developed by Andre Punt for the West Greenland humpback and bowhead whale trials as agreed at the Fourth AWMP Workshop (IWC, 2012) to four potential *SLAs*.

To facilitate comparison across these *SLAs* for each of the two species in what is an initial analysis only, a summary statistic is developed to reflect the improvement in the performance achieved by a candidate *SLA* compared to the extreme of a *Strike Limit* = *Need* approach.

SLAs CONSIDERED

Four *SLAs* are considered in this paper. Two of these form part of the 'reference *SLAs*' as given in IWC (2012) and are included here for a comprehensive description of the *SLAs* considered, while two others are variants of one of these 'reference *SLAs*'. A fifth *SLA* which sets the *Strike Limit* equal to need is also

considered, but its primary use is to provide a baseline to which to compare the performances of the other *SLAs*. Hence it is not referred to in this paper as a separate *SLA*.

- *SLA*1: Interim *SLA* which sets the *Strike Limit* as the lesser of need and $0.02\hat{N}e^{-1.645CV}$ where \hat{N} is the most recent estimate of abundance and *CV* is the coefficient of variation of \hat{N} .
- *SLA2*: Variant of the 'reference *SLA*' denoted here as *SLA3* and described below. This variant sets the downweighting factor applied to the estimates of abundance to 0.8 instead of 0.9.
- SLA3: Weighted-average interim SLA which uses all the abundance estimates and replaces \hat{N} and CV in SLA1 by:

$$\hat{N} = \exp\left[\frac{\sum_{i} \frac{0.9^{t_i} \ln N_i}{CV_i^2}}{\sum_{i} \frac{0.9^{t_i}}{CV_i^2}}\right]$$
(1)

$$CV = \sqrt{\sum_{i} \frac{0.9^{2t_i}}{CV_i^2}} / \sum_{i} \frac{0.9^{t_i}}{CV_i^2}$$
(2)

where N_i is the *i*th estimate of abundance, CV_i is the coefficient of variation of N_i , and t_i is the time (in years) between when the *i*th estimate of abundance was obtained and the first year of the block for which a *Strike Limit* is needed. The downweighting factor which reduces the weight of earlier compared to more recent abundance estimates is 0.9.

*SLA*4: Variant of the 'reference *SLA*' *SLA*3 described above. This variant sets the downweighting factor applied to the estimates of abundance to 0.95.

APPROACH TO SUMMARISE RESULTS

There are over 50 evaluation and robustness trials to be considered for West Greenland bowhead whales, and even more for West Greenland humpback whales (IWC, 2012). For an initial comparison of the performance of different *SLAs*, some simple approach to summarise the results is needed. To this end two of the most important performance statistics have been selected to compare performances amongst the *SLAs* considered. These are the lower 5%-ile of average need satisfaction (N9) and the lower 5%-ile of final depletion (D1). For the purpose of this paper these two statistics are considered for the 1+ population only.

First an index is developed that provides a measure of the improvement in terms of depletion from applying one of the *SLA*s considered compared to the *SLA* that sets the *Strike Limit* equal to need. This index is defined as:

$$D_{imp} = \begin{array}{ccc} 1 & b \ge 0.7 \\ D_{imp} = & 1 & b < 0.7 \text{ and } a \ge 0.7 \\ \frac{a-b}{0.7-b} & b < 0.7 \text{ and } a < 0.7 \end{array}$$
(3)

where *a* is the value of the lower 5%-ile depletion for the *SLA* under consideration and *b* is that for the *SLA* that sets the *Strike Limit* equal to need. In essence the D_{imp} index measures the extent by which the *SLA* under consideration improves depletion compared to the *Strike Limit* = *Need SLA*, but expresses this relative to the maximum improvement possible. The formulation assumes that a value of depletion

above 0.7 is satisfactory, so that no benefit results from achieving a result above 0.7 (clearly results could be recalculated for a different choice for this threshold level, if desired).

The ideal result given values of the lower 5%-ile need satisfaction (N9) and of the index of depletion (D_{imp}) from a trial is for both to be (close to) 1. The statistic proposed to give a measure of the deviation from this ideal scenario for each trial and each *SLA* considered is given by:

$$Q_{t}^{m} = 1 - \frac{\sqrt{\left(1 - x_{t}^{m}\right)^{2} + \left(1 - y_{t}^{m}\right)^{2}}}{\sqrt{2}}$$
(4)

where x_t^m is the lower 5%-ile average need satisfaction for trial *t* and SLA *m* and y_t^m is D_{imp} index for trial *t* and *SLA m*.

Note that Q_t^m is constructed to fall within the range [0, 1], where 1 reflects "perfect" and 0 "abysmal" performance. The statistic gives "equal" weight to need satisfaction and depletion avoidance but could readily be modified to increase the relative emphasis accorded to either.

There are two simple approaches to comparing the performance of *SLAs* under trials using this statistic, where averages are readily taken over all trials. These averages could apply either to the *Q* statistic itself or to a ranking for each trial based on the value of *Q* across the *SLAs* considered.

RESULTS AND DISCUSSION

Table 1 gives the lower 5%-ile N9 and D1 statistics for the humpback trials for each of the four *SLA*s considered, and Table 2 repeats this for the bowhead trials. Corresponding values of the *Q* statistic, and its ranking across the *SLA*s, are given in Tables 3 and 4, while Figures 1 and 2 plot the 5%-ile N9 against the D_{imp} statistic for each trial, as used to calculate the *Q* index (see equation 4), for the humpback and bowhead trials respectively. Note that the Appendix gives details of all the trials and need envelopes considered.

Unsurprisingly, Tables 1 and 2 reflect that the trials showing poor results in terms of the lower 5%-ile D1 statistic are almost all associated with the lowest value of $MSYR_{1+}$ considered (generally 3% for humpbacks for the largest need envelope and 1% for bowheads). For humpbacks extinction occurs at the 5%-ile for $MSYR_{1+}=1\%$ or if *M* increases for $MSYR_{1+}=3\%$.

In terms of the summary Q statistic, there are appreciably different patterns for the two species. There are greater differences, and for more of the trials, for humpbacks compared to bowheads (Tables 3 and 4).

For humpbacks the averages for *Q* over all the trials show a clear preference for *SLA*1 (which uses only the most recent abundance estimate), though this might be surpassed by an *SLA* including more of the abundance estimates but with a downweighting factor reduced below 0.8. Under averaging of ranks across trials, however, there is rather less to choose between the four *SLA*s considered.

In contrast, for the bowheads the average Q values hardly differ, but in terms of average rank *SLA*4 is clearly preferred, and for almost every trial. Thus here the preference is to use multiple survey results, and with little historical downweighting, but this preference does not reflect a very large difference in performance in absolute terms.

In summary then:

- There is generally little to choose between the four *SLAs* in terms of performance.
- None perform adequately in terms of resource depletion for the lowest MSYR₁₊ values considered.
- The qualitative difference in preference for single or multiple abundance index use between the two species is a little surprising. It might be that population model based *SLAs* would be needed if a more common (generic) approach is desired.

ACKNOWLEDGMENT

We thank the IWC for financial support for this work, and Andre Punt for developing the code for the trials.

REFERENCE

International Whaling Commission. 2012. Report of the Fourth AWMP Workshop on the Development of *SLAs* for the Greenlandic Hunts.

Table 1. Lower 5%-ile values for average need satisfaction (N9) and final depletion (D1) for West

 Greenland humpback whales. Results are shown for the four SLAs considered.

Trial		Lower 5	%-ile N9		Lower 5%-ile D1				
IIIai	SLA1	SLA2	SLA3	SLA4	SLA1	SLA2	SLA3	SLA4	
GH01AA	0.99	1.00	1.00	1.00	0.948	0.948	0.948	0.948	
GH01AB	0.99	0.99	0.99	1.00	0.906	0.905	0.905	0.905	
GH01AC	0.96	0.97	0.99	1.00	0.878	0.871	0.854	0.853	
GH01AD	0.94	0.94	0.95	0.97	0.878	0.873	0.868	0.863	
GH01BA	0.93	0.94	0.96	0.97	0.766	0.753	0.739	0.727	
GH01BB	0.91	0.93	0.96	0.97	0.703	0.679	0.660	0.616	
GH01BC	0.86	0.87	0.90	0.94	0.636	0.595	0.561	0.542	
GH01BD	0.79	0.80	0.77	0.77	0.481	0.435	0.369	0.337	
GH01CA	0.99	1.00	1.00	1.00	0.939	0.939	0.939	0.939	
GH01CB	0.91	0.94	0.97	1.00	0.892	0.888	0.886	0.868	
GH01CC	0.85	0.87	0.92	0.96	0.866	0.859	0.821	0.805	
GH01CD	0.85	0.87	0.92	0.97	0.865	0.852	0.827	0.816	
GH02AB	0.99	1.00	1.00	1.00	0.906	0.905	0.905	0.905	
GH02AD	0.96	0.98	0.98	0.99	0.878	0.863	0.863	0.863	
GH02BB	0.93	0.96	0.97	0.98	0.688	0.639	0.588	0.549	
GH02BD	0.81	0.83	0.84	0.83	0.496	0.349	0.286	0.267	
GH03AB	1.00	1.00	1.00	1.00	0.912	0.912	0.912	0.912	
GH03AD	0.95	0.96	0.98	0.99	0.879	0.878	0.876	0.872	
GH03BB	0.89	0.90	0.93	0.95	0.692	0.683	0.656	0.611	
GH03BD	0.75	0.75	0.77	0.78	0.390	0.380	0.280	0.196	
GH04AB	1.00	1.00	1.00	1.00	0.908	0.908	0.908	0.908	
GH04AD	0.93	0.96	0.98	0.98	0.884	0.875	0.873	0.873	
GH04BB	0.94	0.95	0.96	0.98	0.826	0.819	0.813	0.810	
GH04BD	0.87	0.88	0.90	0.90	0.743	0.715	0.640	0.615	
GH05AB	0.94	0.96	0.99	1.00	0.849	0.844	0.820	0.799	
GH05AD	0.95	0.95	0.96	0.98	0.878	0.873	0.868	0.863	
GH05BB	0.87	0.89	0.92	0.93	0.541	0.541	0.492	0.484	
GH05BD	0.69	0.68	0.68	0.66	0.291	0.256	0.165	0.127	
GH06AB	0.99	0.99	0.99	1.00	0.972	0.972	0.972	0.972	
GH06AD	0.94	0.95	0.95	0.96	0.948	0.944	0.941	0.939	
GH06BB	0.90	0.90	0.93	0.95	0.802	0.785	0.770	0.760	
GH06BD	0.77	0.78	0.80	0.78	0.551	0.501	0.386	0.300	
GH07AB	0.99	0.99	0.99	1.00	0.873	0.873	0.873	0.873	
GH07AD	0.95	0.95	0.96	0.98	0.840	0.840	0.836	0.833	
GH07BB	0.91	0.93	0.96	0.97	0.698	0.684	0.632	0.579	
GH07BD	0.80	0.83	0.79	0.79	0.444	0.407	0.358	0.322	

a) Evaluation Trials

Table 1cont. Lower 5%-ile values for average need satisfaction (N9) and final depletion (D1) for West Greenland humpback whales. Results are shown for the four *SLAs* considered.

Trial		Lower 5	%-ile N9		Lower 5%-ile D1				
Indi	SLA1	SLA2	SLA3	SLA4	SLA1	SLA2	SLA3	SLA4	
GH21AB	0.94	0.96	0.99	1.00	0.465	0.464	0.452	0.444	
GH21AD	0.86	0.88	0.94	0.95	0.453	0.448	0.437	0.387	
GH21BB	0.86	0.88	0.94	0.96	0.419	0.401	0.391	0.379	
GH21BD	0.77	0.77	0.77	0.77	0.367	0.342	0.302	0.226	
GH22AB	0.96	0.97	0.98	0.99	0.251	0.249	0.249	0.249	
GH22AD	0.88	0.90	0.94	0.95	0.219	0.216	0.211	0.211	
GH22BB	0.53	0.56	0.62	0.72	0.000	0.000	0.000	0.000	
GH22BD	0.36	0.39	0.45	0.49	0.000	0.000	0.000	0.000	
GH23AB	0.99	1.00	1.00	1.00	0.910	0.907	0.905	0.905	
GH23AD	0.96	0.96	0.97	0.97	0.878	0.873	0.870	0.863	
GH23BB	0.94	0.95	0.96	0.97	0.689	0.667	0.614	0.551	
GH23BD	0.79	0.80	0.76	0.74	0.477	0.435	0.369	0.337	
GH24AB	0.99	1.00	1.00	1.00	0.892	0.892	0.892	0.892	
GH24AD	0.94	0.95	0.96	0.97	0.847	0.845	0.844	0.844	
GH24BB	0.90	0.91	0.94	0.95	0.631	0.602	0.575	0.544	
GH24BD	0.66	0.66	0.65	0.65	0.513	0.469	0.375	0.307	
GH24CB	0.88	0.92	0.97	0.99	0.894	0.888	0.874	0.871	
GH24CD	0.76	0.79	0.86	0.92	0.871	0.862	0.854	0.842	
GH25DB	0.32	0.34	0.38	0.48	0.000	0.000	0.000	0.000	
GH25DD	0.22	0.23	0.27	0.33	0.000	0.000	0.000	0.000	
GH26AB	0.95	0.97	0.99	1.00	0.882	0.875	0.866	0.866	
GH26AD	0.88	0.91	0.94	0.95	0.847	0.838	0.814	0.802	
GH26BB	0.94	0.95	0.97	0.99	0.717	0.704	0.674	0.645	
GH26BD	0.80	0.80	0.79	0.77	0.481	0.435	0.369	0.337	

b) Robustness Trials

Table 2. Lower 5%-ile values for average need satisfaction (N9) and final depletion (D1) for WestGreenland bowhead whales. Results are shown for the four SLAs considered.

a) Eval	luation	Trials
ч,		aacion	TTICITS

Trial		Lower 5	%-ile N9		Lower 5%-ile D1				
Iriai	SLA1	SLA2	SLA3	SLA4	SLA1	SLA2	SLA3	SLA4	
GB01AA	0.99	1.00	1.00	1.00	0.698	0.698	0.698	0.698	
GB01AB	0.97	1.00	1.00	1.00	0.685	0.685	0.685	0.685	
GB01AC	0.96	0.99	1.00	1.00	0.671	0.671	0.671	0.671	
GB01BA	0.90	0.94	0.99	1.00	0.033	0.031	0.031	0.031	
GB01BB	0.83	0.89	0.95	1.00	0.025	0.022	0.019	0.019	
GB01BC	0.71	0.79	0.90	0.97	0.019	0.015	0.008	0.006	
GB01CA	0.90	0.94	0.99	1.00	0.965	0.965	0.965	0.965	
GB01CB	0.80	0.85	0.92	0.99	0.942	0.938	0.937	0.937	
GB01CC	0.71	0.76	0.84	0.90	0.931	0.924	0.903	0.892	
GB02AA	0.98	1.00	1.00	1.00	0.698	0.698	0.698	0.698	
GB02AC	0.97	1.00	1.00	1.00	0.673	0.671	0.671	0.671	
GB02BA	0.90	0.99	1.00	1.00	0.033	0.031	0.031	0.031	
GB02BC	0.75	0.86	0.92	0.97	0.017	0.009	0.007	0.006	
GB03AA	1.00	1.00	1.00	1.00	0.698	0.698	0.698	0.698	
GB03AC	0.98	0.99	1.00	1.00	0.676	0.674	0.671	0.671	
GB03BA	0.90	0.95	0.99	1.00	0.031	0.031	0.031	0.031	
GB03BC	0.77	0.77	0.81	0.91	0.017	0.017	0.014	0.011	
GB04AA	0.96	0.99	1.00	1.00	0.905	0.905	0.905	0.905	
GB04AC	0.94	0.96	0.99	1.00	0.887	0.881	0.876	0.876	
GB04BA	0.91	0.96	1.00	1.00	0.138	0.125	0.125	0.125	
GB04BC	0.81	0.87	0.94	0.99	0.102	0.099	0.096	0.096	
GB05AA	0.99	1.00	1.00	1.00	0.817	0.817	0.817	0.817	
GB05AC	0.93	0.97	1.00	1.00	0.779	0.779	0.779	0.779	
GB05BA	0.92	0.97	1.00	1.00	0.186	0.183	0.182	0.182	
GB05BC	0.84	0.89	0.95	1.00	0.133	0.126	0.126	0.126	
GB06AA	1.00	1.00	1.00	1.00	0.650	0.650	0.650	0.650	
GB06AC	0.96	1.00	1.00	1.00	0.620	0.620	0.620	0.620	
GB06BA	0.94	0.99	1.00	1.00	0.161	0.158	0.158	0.158	
GB06BC	0.89	0.93	0.96	1.00	0.124	0.124	0.124	0.124	
GB07AA	0.99	1.00	1.00	1.00	0.685	0.685	0.685	0.685	
GB07AC	-	-	-	-	-	-	-	-	
GB07BA	0.88	0.94	0.99	1.00	0.022	0.019	0.019	0.019	
GB07BC	0.69	0.76	0.85	0.91	0.008	0.001	0.000	0.000	
GB08AA	0.99	1.00	1.00	1.00	0.672	0.672	0.672	0.672	
GB08AC	0.96	0.99	1.00	1.00	0.642	0.642	0.642	0.642	
GB08BA	0.86	0.92	0.99	1.00	0.009	0.006	0.006	0.006	
GB08BC	0.65	0.69	0.80	0.92	0.000	0.000	0.000	0.000	
GB09AA	0.99	1.00	1.00	1.00	0.701	0.701	0.701	0.701	
GB09AC	0.96	0.99	1.00	1.00	0.674	0.674	0.674	0.674	
GB09BA	0.90	0.96	1.00	1.00	0.037	0.036	0.036	0.036	
GB09BC	0.71	0.80	0.90	0.97	0.024	0.019	0.012	0.010	

Table 2cont. Lower 5%-ile values for average need satisfaction (N9) and final depletion (D1) for WestGreenland bowhead whales. Results are shown for the four SLAs considered.

Trial		Lower 5	%-ile N9		Lower 5%-ile D1			
IIIdi	SLA1	SLA2	SLA3	SLA4	SLA1	SLA2	SLA3	SLA4
GB21AA	0.99	1.00	1.00	1.00	0.472	0.472	0.472	0.472
GB21AC	0.95	0.98	1.00	1.00	0.461	0.461	0.461	0.461
GB21BA	0.90	0.94	0.99	1.00	0.033	0.031	0.031	0.031
GB21BC	0.67	0.72	0.86	0.97	0.019	0.015	0.008	0.006
GB22AA	0.99	1.00	1.00	1.00	0.339	0.339	0.339	0.339
GB22AC	0.96	1.00	1.00	1.00	0.871	0.871	0.871	0.871
GB22BA	0.90	0.94	0.99	1.00	0.033	0.031	0.031	0.031
GB22BC	0.74	0.81	0.90	0.97	0.019	0.015	0.008	0.006
GB23AA	1.00	1.00	1.00	1.00	0.698	0.698	0.698	0.698
GB23AC	1.00	1.00	1.00	1.00	0.671	0.671	0.671	0.671
GB23BA	0.95	0.99	1.00	1.00	0.031	0.031	0.031	0.031
GB23BC	0.74	0.77	0.83	0.92	0.017	0.015	0.013	0.011

b) Robustness Trials

Table 3. Summary statistics to compare potential *SLAs* for West Greenland humpback whales. Trials that show the greatest differences (a *Q* difference exceeding 0.1) amongst the different *SLAs* considered are highlighted. Where ranks are equal, in the averaging a central value is taken: thus for example 1, 2, 2, 4 is counted as 1, 2.5, 2.5, 4.

a) Evaluation Trials

Trial		C	l t		Rank			
Trial	SLA1	SLA2	SLA3	SLA4	SLA1	SLA2	SLA3	SLA4
GH01AA	0.993	1.000	1.000	1.000	4	1	1	1
GH01AB	0.993	0.993	0.993	1.000	2	2	2	1
GH01AC	0.972	0.979	0.993	1.000	4	3	2	1
GH01AD	0.958	0.958	0.965	0.979	3	3	2	1
GH01BA	0.951	0.958	0.972	0.979	4	3	2	1
GH01BB	<mark>0.936</mark>	<mark>0.900</mark>	<mark>0.832</mark>	<mark>0.652</mark>	1	2	3	4
GH01BC	<mark>0.846</mark>	<mark>0.785</mark>	<mark>0.734</mark>	<mark>0.705</mark>	1	2	3	4
GH01BD	<mark>0.734</mark>	<mark>0.697</mark>	<mark>0.628</mark>	<mark>0.599</mark>	1	2	3	4
GH01CA	0.993	1.000	1.000	1.000	4	1	1	1
GH01CB	0.936	0.958	0.979	1.000	4	3	2	1
GH01CC	0.894	0.908	0.943	0.972	4	3	2	1
GH01CD	0.894	0.908	0.943	0.979	4	3	2	1
GH02AB	0.993	1.000	1.000	1.000	4	1	1	1
GH02AD	0.972	0.986	0.986	0.993	4	2	2	1
GH02BB	<mark>0.930</mark>	<mark>0.746</mark>	<mark>0.536</mark>	<mark>0.375</mark>	1	2	3	4
GH02BD	<mark>0.754</mark>	<mark>0.626</mark>	<mark>0.567</mark>	<mark>0.546</mark>	1	2	3	4
GH03AB	1.000	1.000	1.000	1.000	1	1	1	1
GH03AD	0.965	0.972	0.986	0.993	4	3	2	1
GH03BB	<mark>0.915</mark>	<mark>0.899</mark>	<mark>0.806</mark>	<mark>0.619</mark>	1	2	3	4
GH03BD	<mark>0.640</mark>	<mark>0.632</mark>	<mark>0.546</mark>	<mark>0.468</mark>	1	2	3	4
GH04AB	1.000	1.000	1.000	1.000	1	1	1	1

Table 3cont. Summary statistics to compare potential *SLAs* for West Greenland humpback whales. Trials that show the greatest differences (a *Q* difference exceeding 0.1) amongst the different *SLAs* considered are highlighted. Where ranks are equal, in the averaging a central value is taken: thus for example 1, 2, 2, 4 is counted as 1, 2.5, 2.5, 4.

Trial		C	l t		Rank			
Trial	SLA1	SLA2	SLA3	SLA4	SLA1	SLA2	SLA3	SLA4
GH04AD	0.951	0.972	0.986	0.986	4	3	1	1
GH04BB	0.958	0.965	0.972	0.986	4	3	2	1
GH04BD	<mark>0.908</mark>	<mark>0.915</mark>	<mark>0.804</mark>	<mark>0.731</mark>	2	1	3	4
GH05AB	0.958	0.972	0.993	1.000	4	3	2	1
GH05AD	0.965	0.965	0.972	0.986	3	3	2	1
GH05BB	0.692	0.696	0.612	0.598	2	1	3	4
GH05BD	<mark>0.532</mark>	<mark>0.498</mark>	<mark>0.414</mark>	<mark>0.373</mark>	1	2	3	4
GH06AB	0.993	0.993	0.993	1.000	2	2	2	1
GH06AD	0.958	0.965	0.965	0.972	4	2	2	1
GH06BB	0.929	0.929	0.951	0.965	3	3	2	1
GH06BD	<mark>0.778</mark>	<mark>0.746</mark>	<mark>0.653</mark>	<mark>0.567</mark>	1	2	3	4
GH07AB	0.993	0.993	0.993	1.000	2	2	2	1
GH07AD	0.965	0.965	0.972	0.986	3	3	2	1
GH07BB	<mark>0.936</mark>	<mark>0.907</mark>	<mark>0.663</mark>	<mark>0.401</mark>	1	2	3	4
GH07BD	<mark>0.705</mark>	<mark>0.681</mark>	<mark>0.624</mark>	<mark>0.590</mark>	1	2	3	4

a) Evaluation Trials cont.

b) Robustness Trials

Trial		(Q _t			R	ank	
iriai	SLA1	SLA2	SLA3	SLA4	SLA1	SLA2	SLA3	SLA4
GH21AB	0.362	0.360	0.328	0.306	1	2	3	4
GH21AD	<mark>0.445</mark>	<mark>0.437</mark>	<mark>0.417</mark>	<mark>0.307</mark>	1	2	3	4
GH21BB	0.442	0.410	0.395	0.372	1	2	3	4
GH21BD	<mark>0.626</mark>	<mark>0.603</mark>	<mark>0.566</mark>	<mark>0.494</mark>	1	2	3	4
GH22AB	0.295	0.293	0.293	0.293	1	4	3	2
GH22AD	0.316	0.313	0.309	0.309	1	2	4	3
GH22BB	0.219	0.227	0.244	0.266	4	3	2	1
GH22BD	0.160	0.172	0.193	0.206	4	3	2	1
GH23AB	0.993	1.000	1.000	1.000	4	1	1	1
GH23AD	0.972	0.972	0.979	0.979	3	3	1	1
GH23BB	<mark>0.938</mark>	<mark>0.859</mark>	<mark>0.643</mark>	<mark>0.384</mark>	1	2	3	4
GH23BD	<mark>0.730</mark>	<mark>0.697</mark>	<mark>0.625</mark>	<mark>0.590</mark>	1	2	3	4
GH24AB	0.993	1.000	1.000	1.000	4	1	1	1
GH24AD	0.958	0.965	0.972	0.979	4	3	2	1
GH24BB	<mark>0.863</mark>	<mark>0.821</mark>	<mark>0.782</mark>	<mark>0.731</mark>	1	2	3	4
GH24BD	<mark>0.694</mark>	<mark>0.665</mark>	<mark>0.589</mark>	<mark>0.532</mark>	1	2	3	4
GH24CB	0.915	0.943	0.979	0.993	4	3	2	1
GH24CD	<mark>0.830</mark>	<mark>0.852</mark>	<mark>0.901</mark>	<mark>0.943</mark>	4	3	2	1
GH25DB	0.145	0.153	0.168	0.203	4	3	2	1
GH25DD	0.103	0.108	0.125	0.149	4	3	2	1
GH26AB	0.965	0.979	0.993	1.000	4	3	2	1
GH26AD	0.915	0.936	0.958	0.965	4	3	2	1
GH26BB	<mark>0.958</mark>	<mark>0.965</mark>	<mark>0.885</mark>	<mark>0.760</mark>	2	1	3	4
GH26BD	<mark>0.737</mark>	<mark>0.697</mark>	<mark>0.634</mark>	<mark>0.599</mark>	1	2	3	4
Average overall	0.801	0.791	0.766	0.739	2.667	2.500	2.492	2.342

Table 4. Summary statistics to compare potential *SLAs* for West Greenland bowhead whales. Trials that show the greatest differences amongst the different *SLAs* considered are highlighted. Where ranks are equal, in the averaging a central value is taken: thus for example 1, 2, 2, 4 is counted as 1, 2.5, 2.5, 4.a) Evaluation Trials

Trial	vial Q _t				Rank				
Iriai	SLA1	SLA2	SLA3	SLA4	SLA1	SLA2	SLA3	SLA4	
GB01AA	0.293	0.293	0.293	0.293	4	1	1	1	
GB01AB	0.293	0.293	0.293	0.293	4	1	1	1	
GB01AC	0.292	0.293	0.293	0.293	4	3	1	1	
GB01BA	0.291	0.292	0.293	0.293	4	3	2	1	
GB01BB	0.289	0.292	0.292	0.293	4	3	2	1	
GB01BC	0.276	0.286	0.291	0.293	4	3	2	1	
GB01CA	0.929	0.958	0.993	1.000	4	3	2	1	
GB01CB	<mark>0.859</mark>	<mark>0.894</mark>	<mark>0.943</mark>	<mark>0.993</mark>	4	3	2	1	
GB01CC	<mark>0.795</mark>	<mark>0.830</mark>	<mark>0.887</mark>	<mark>0.929</mark>	4	3	2	1	
GB02AA	0.293	0.293	0.293	0.293	4	1	1	1	
GB02AC	0.341	0.293	0.293	0.293	1	2	2	2	
GB02BA	0.291	0.293	0.293	0.293	4	3	1	1	
GB02BC	0.282	0.289	0.292	0.293	4	3	2	1	
GB03AA	0.293	0.293	0.293	0.293	1	1	1	1	
GB03AC	<mark>0.415</mark>	<mark>0.366</mark>	<mark>0.293</mark>	<mark>0.293</mark>	1	2	3	3	
GB03BA	0.289	0.292	0.293	0.293	4	3	2	1	
GB03BC	0.285	0.285	0.288	0.295	3	3	2	1	
GB04AA	0.972	0.993	1.000	1.000	4	3	1	1	
GB04AC	0.958	0.972	0.993	1.000	4	3	2	1	
GB04BA	0.306	0.292	0.293	0.293	1	4	2	2	
GB04BC	0.287	0.290	0.292	0.293	4	3	2	1	
GB05AA	0.993	1.000	1.000	1.000	4	1	1	1	
GB05AC	0.951	0.979	1.000	1.000	4	3	1	1	
GB05BA	0.296	0.294	0.293	0.293	1	2	3	3	
GB05BC	0.292	0.289	0.292	0.293	2	4	3	1	
GB06AA	0.293	0.293	0.293	0.293	1	1	1	1	
GB06AC	0.292	0.293	0.293	0.293	4	1	1	1	
GB06BA	0.296	0.293	0.293	0.293	1	4	2	2	
GB06BC	0.289	0.291	0.292	0.293	4	3	2	1	
GB07AA	0.293	0.293	0.293	0.293	4	1	1	1	
GB07AC	-	_	-	_	-	-	-	-	
GB07BA	0.291	0.292	0.293	0.293	4	3	2	1	
GB07BC	0.267	0.274	0.285	0.290	4	3	2	1	
GB08AA	0.293	0.293	0.293	0.293	4	1	1	1	
GB08AC	0.292	0.293	0.293	0.293	4	3	1	1	
GB08BA	0.289	0.291	0.293	0.293	4	3	2	1	
GB08BC	0.251	0.260	0.279	0.291	4	3	2	1	
GB09AA	0.993	1.000	1.000	1.000	4	1	1	1	
GB09AC	0.292	0.293	0.293	0.293	4	3	1	1	
GB09BA	0.290	0.292	0.293	0.293	4	3	1	1	
GB09BC	0.278	0.288	0.291	0.293	4	3	2	1	

Table 4cont. Summary statistics to compare potential *SLAs* for West Greenland bowhead whales. Trials that show the greatest differences amongst the different *SLAs* considered are highlighted. Where ranks are equal, in the averaging a central value is taken: thus for example 1, 2, 2, 4 is counted as 1, 2.5, 2.5, 4.

Trial			Q _t		Rank			
IIIdi	SLA1	SLA2	SLA3	SLA4	SLA1	SLA2	SLA3	SLA4
GB21AA	0.293	0.293	0.293	0.293	4	1	1	1
GB21AC	0.315	0.316	0.316	0.316	4	3	1	1
GB21BA	0.291	0.292	0.293	0.293	4	3	2	1
GB21BC	0.268	0.275	0.288	0.293	4	3	2	1
GB22AA	0.293	0.293	0.293	0.293	4	1	1	1
GB22AC	0.972	1.000	1.000	1.000	4	1	1	1
GB22BA	0.291	0.292	0.293	0.293	4	3	2	1
GB22BC	0.282	0.289	0.291	0.293	4	3	2	1
GB23AA	0.293	0.293	0.293	0.293	1	1	1	1
GB23AC	0.293	0.293	0.293	0.293	1	1	1	1
GB23BA	0.292	0.293	0.293	0.293	4	3	1	1
GB23BC	0.280	0.283	0.290	0.296	4	3	2	1
Average overall	0.404	0.408	0.411	0.414	3.548	2.779	2.067	1.606

b	Robustness	Tria	s
~ ~	1100005010055	1110	

Figure 1. Plot of the lower 5%-ile average need satisfaction (N9) against the depletion improvement statistic (D_{imp}) for four potential *SLA*s for West Greenland humpback whales for all of the associated trials.

Figure 2. Plot of the lower 5%-ile average need satisfaction (N9) against the depletion improvement statistic (D_{imp}) for four potential *SLA*s for West Greenland bowhead whales for all of the associated trials.

APPENDIX

List of evaluation and robustness trials (see IWC, 2012, Table 5 of Annex F)

a) Evaluation trials for humpback whales

Trial	Description
GH01AA	$MSYR_{1+} = 5\%$; need scenario A; survey frequency = 10; historic survey bias = 1
GH01AB	$MSYR_{1+} = 5\%$; need scenario B; survey frequency = 10; historic survey bias = 1
GH01AC	MSYR ₁₊ = 5%; need scenario C; survey frequency = 10; historic survey bias = 1
GH01AD	MSYR ₁₊ = 5%; need scenario D; survey frequency = 10; historic survey bias = 1
GH01BA	MSYR ₁₊ = 3%; need scenario A; survey frequency = 10; historic survey bias = 1
GH01BB	MSYR ₁₊ = 3%; need scenario B; survey frequency = 10; historic survey bias = 1
GH01BC	MSYR ₁₊ = 3%; need scenario C; survey frequency = 10; historic survey bias = 1
GH01BD	MSYR ₁₊ = 3%; need scenario D; survey frequency = 10; historic survey bias = 1
GH01CA	MSYR ₁₊ = 7%; need scenario A; survey frequency = 10; historic survey bias = 1
GH01CB	MSYR ₁₊ = 7%; need scenario B; survey frequency = 10; historic survey bias = 1
GH01CC	MSYR ₁₊ = 7%; need scenario C; survey frequency = 10; historic survey bias = 1
GH01CD	MSYR ₁₊ = 7%; need scenario D; survey frequency = 10; historic survey bias = 1
GH02AB	MSYR ₁₊ = 5%; need scenario B; survey frequency = 5; historic survey bias = 1
GH02AD	MSYR ₁₊ = 5%; need scenario D; survey frequency = 5; historic survey bias = 1
GH02BB	MSYR ₁₊ = 3%; need scenario B; survey frequency = 5; historic survey bias = 1
GH02BD	MSYR ₁₊ = 3%; need scenario D; survey frequency = 5; historic survey bias = 1
GH03AB	MSYR ₁₊ = 5%; need scenario B; survey frequency = 15; historic survey bias = 1
GH03AD	MSYR ₁₊ = 5%; need scenario D; survey frequency = 15; historic survey bias = 1
GH03BB	MSYR ₁₊ = 3%; need scenario B; survey frequency = 15; historic survey bias = 1
GH03BD	MSYR ₁₊ = 3%; need scenario D; survey frequency = 15; historic survey bias = 1
GH04AB	MSYR ₁₊ = 5%; need scenario B; survey frequency = 10; historic survey bias = 0.8
GH04AD	MSYR ₁₊ = 5%; need scenario D; survey frequency = 10; historic survey bias = 0.8
GH04BB	$MSYR_{1+} = 3\%$; need scenario B; survey frequency = 10; historic survey bias = 0.8
GH04BD	$MSYR_{1+} = 3\%$; need scenario D; survey frequency = 10; historic survey bias = 0.8
GH05AB	$MSYR_{1+} = 5\%$; need scenario B; survey frequency = 10; historic survey bias = 1.2
GH05AD	$MSYR_{1+} = 5\%$; need scenario D; survey frequency = 10; historic survey bias = 1.2
GH05BB	MSYR ₁₊ = 3%; need scenario B; survey frequency = 10; historic survey bias = 1.2
GH05BD	$MSYR_{1+} = 3\%$; need scenario D; survey frequency = 10; historic survey bias = 1.2
GH06AB	$MSYR_{1+} = 5\%$; need scenario B; survey frequency = 10; historic survey bias = 1; 3 episodic events
GH06AD	$MSYR_{1+} = 5\%$; need scenario D; survey frequency = 10; historic survey bias = 1; 3 episodic events
GH06BB	$MSYR_{1+} = 3\%$; need scenario B; survey frequency = 10; historic survey bias = 1; 3 episodic events
GH06BD	$MSYR_{1+} = 3\%$; need scenario D; survey frequency = 10; historic survey bias = 1; 3 episodic events
GH07AB	$MSYR_{1+} = 5\%$; need scenario B; survey frequency = 10; historic survey bias = 1; stochastic events
	every 5 years
GH07AD	$MSYR_{1+} = 5\%$; need scenario D; survey frequency = 10; historic survey bias = 1; stochastic events
	every 5 years
GH07BB	$MSYR_{1+} = 3\%$; need scenario B; survey frequency = 10; historic survey bias = 1; stochastic events
	every 5 years
GH07BD	$V(SYK_{1+} = 3\%)$; need scenario D; survey frequency = 10; historic survey bias = 1; stochastic events
1	

b) Robustness trials for humpback whales

Trial	Description
GH21AB	Linear decrease in K; MSYR ₁₊ = 5%; need scenario B
GH21AD	Linear decrease in K; MSYR ₁₊ = 5%; need scenario D
GH21BB	Linear decrease in K; MSYR ₁₊ = 3%; need scenario B
GH21BD	Linear decrease in K; MSYR ₁₊ = 3%; need scenario D
GH22AB	Linear increase in <i>M</i> ; MSYR ₁₊ = 5%; need scenario B
GH22AD	Linear increase in <i>M</i> ; MSYR ₁₊ = 5%; need scenario D
GH22BB	Linear increase in <i>M</i> ; MSYR ₁₊ = 3%; need scenario B
GH22BD	Linear increase in <i>M</i> ; MSYR ₁₊ = 3%; need scenario D
GH23AB	Strategic surveys; MSYR ₁₊ = 5%; need scenario B
GH23AD	Strategic surveys; MSYR ₁₊ = 5%; need scenario D
GH23BB	Strategic surveys; MSYR ₁₊ = 3%; need scenario B
GH23BD	Strategic surveys; MSYR ₁₊ = 3%; need scenario D
GH24AB	Alternative priors; MSYR ₁₊ = 5%; need scenario B
GH24AD	Alternative priors; MSYR ₁₊ = 5%; need scenario D
GH24BB	Alternative priors; MSYR ₁₊ = 3%; need scenario B
GH24BD	Alternative priors; MSYR ₁₊ = 3%; need scenario D
GH24CB	Alternative priors; MSYR ₁₊ = 7%; need scenario B
GH24CD	Alternative priors; MSYR ₁₊ = 7%; need scenario D
GH25DB	MSYR ₁₊ = 1%; need scenario B
GH25DD	MSYR ₁₊ = 1%; need scenario D
GH26AB	Include mark-recapture estimates in the conditioning; MSYR ₁₊ = 5%; need scenario B
GH26AD	Include mark-recapture estimates in the conditioning; $MSYR_{1+} = 5\%$; need scenario D
GH26BB	Include mark-recapture estimates in the conditioning; $MSYR_{1+} = 3\%$; need scenario B
GH26BD	Include mark-recapture estimates in the conditioning; $MSYR_{1+} = 3\%$; need scenario D

c) Evaluation trials for bowhead whales

Trial	Description
GB01AA	MSYR ₁₊ = 2.5%; need scenario A; survey frequency = 10; historic survey bias = 1
GB01AB	$MSYR_{1+} = 2.5\%$; need scenario B; survey frequency = 10; historic survey bias = 1
GB01AC	MSYR ₁₊ = 2.5%; need scenario C; survey frequency = 10; historic survey bias = 1
GB01BA	MSYR ₁₊ = 1%; need scenario A; survey frequency = 10; historic survey bias = 1
GB01BB	MSYR ₁₊ = 1%; need scenario B; survey frequency = 10; historic survey bias = 1
GB01BC	MSYR ₁₊ = 1%; need scenario C; survey frequency = 10; historic survey bias = 1
GB01CA	MSYR ₁₊ = 4% (and MSYL1+=0.8); need scenario A; survey frequency = 10; historic survey bias = 1
GB01CB	MSYR ₁₊ = 4% (and MSYL1+=0.8); need scenario B; survey frequency = 10; historic survey bias = 1
GB01CC	MSYR ₁₊ = 4% (and MSYL1+=0.8); need scenario C; survey frequency = 10; historic survey bias = 1
GB02AA	MSYR ₁₊ = 2.5%; need scenario A; survey frequency = 5; historic survey bias = 1
GB02AC	MSYR ₁₊ = 2.5%; need scenario C; survey frequency = 5; historic survey bias = 1
GB02BA	MSYR ₁₊ = 1%; need scenario A; survey frequency = 5; historic survey bias = 1
GB02BC	MSYR ₁₊ = 1%; need scenario C; survey frequency = 5; historic survey bias = 1
GB03AA	$MSYR_{1+} = 2.5\%$; need scenario A; survey frequency = 15; historic survey bias = 1
GB03AC	MSYR ₁₊ = 2.5%; need scenario C; survey frequency = 15; historic survey bias = 1
GB03BA	MSYR ₁₊ = 1%; need scenario A; survey frequency = 15; historic survey bias = 1

GB03BC	MSYR ₁₊ = 1%; need scenario C; survey frequency = 15; historic survey bias = 1
GB04AA	MSYR ₁₊ = 2.5%; need scenario A; survey frequency = 10; historic survey bias = 0.5
GB04AC	MSYR ₁₊ = 2.5%; need scenario C; survey frequency = 10; historic survey bias = 0.5
GB04BA	MSYR ₁₊ = 1%; need scenario A; survey frequency = 10; historic survey bias = 0.5
GB04BC	MSYR ₁₊ = 1%; need scenario C; survey frequency = 10; historic survey bias = 0.5
GB05AA	MSYR ₁₊ = 2.5%; need scenario A; survey frequency = 10; historic survey bias = 1; 3 episodic events
GB05AC	MSYR ₁₊ = 2.5%; need scenario C; survey frequency = 10; historic survey bias = 1; 3 episodic events
GB05BA	MSYR ₁₊ = 1%; need scenario A; survey frequency = 10; historic survey bias = 1; 3 episodic events
GB05BC	MSYR ₁₊ = 1%; need scenario C; survey frequency = 10; historic survey bias = 1; 3 episodic events
GB06AA	MSYR ₁₊ = 2.5%; need scenario A; survey frequency = 10; historic survey bias = 1; stochastic events
	every 5 years
GROGAC	MSYR ₁₊ = 2.5%; need scenario C; survey frequency = 10; historic survey bias = 1; stochastic events
GDUDAC	every 5 years
GROGRA	MSYR ₁₊ = 1%; need scenario A; survey frequency = 10; historic survey bias = 1; stochastic events
GDOODA	every 5 years
GROGRC	$MSYR_{1+} = 1\%$; need scenario C; survey frequency = 10; historic survey bias = 1; stochastic events
GDOODC	every 5 years
GB0744	$MSYR_{1+} = 2.5\%$; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future
GDUIAA	Canadian catches B
GB07AC*	MSYR ₁₊ = 2.5%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future
	Canadian catches B
GB07BA	$MSYR_{1+} = 1\%$; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future
	Canadian catches B
GB07BC	$MSYR_{1+} = 1\%$; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future
	Canadian catches B
GB08AA	$MSYR_{1+} = 2.5\%$; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future
	Canadian catches C
GB08AC	$MSYR_{1+} = 2.5\%$; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future
	Canadian catches C
GB08BA	$MSYR_{1+} = 1\%$; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future
	Canadian Catches C
GB08BC	MSVD $= 10^{4}$, need connerin C, currycy frequency $= 10$; historic currycy hist $= 1$; alternative future
	$MSYR_{1+} = 1\%$; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future
	$MSYR_{1+} = 1\%$; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches C
GB09AA	MSYR ₁₊ = 1%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches C MSYR ₁₊ = 2.5%; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future
GB09AA	MSYR ₁₊ = 1%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches C MSYR ₁₊ = 2.5%; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches D MSYR_ = 2.5%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future future Canadian catches D
GB09AA GB09AC	 MSYR₁₊ = 1%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches C MSYR₁₊ = 2.5%; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches D MSYR₁₊ = 2.5%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future future Canadian catches D
GB09AA GB09AC	 MSYR₁₊ = 1%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches C MSYR₁₊ = 2.5%; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches D MSYR₁₊ = 2.5%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches D MSYR₁₊ = 1%; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future future Canadian catches D
GB09AA GB09AC GB09BA	MSYR1+ = 1%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches CMSYR1+ = 2.5%; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches DMSYR1+ = 2.5%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches DMSYR1+ = 1%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches DMSYR1+ = 1%; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches D
GB09AA GB09AC GB09BA	 MSYR₁₊ = 1%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches C MSYR₁₊ = 2.5%; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches D MSYR₁₊ = 2.5%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches D MSYR₁₊ = 1%; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches D MSYR₁₊ = 1%; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future future Canadian catches D
GB09AA GB09AC GB09BA GB09BC	MSYR1+ = 1%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches CMSYR1+ = 2.5%; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches DMSYR1+ = 2.5%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches DMSYR1+ = 1%; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches DMSYR1+ = 1%; need scenario A; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches DMSYR1+ = 1%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches DMSYR1+ = 1%; need scenario C; survey frequency = 10; historic survey bias = 1; alternative future Canadian catches D

* Trial broke down under computation, so no results are produced.

, 	
Trial	Description
	-
GB21AA	Linear decrease in <i>K</i> ; MSYR ₁₊ = 2.5%; need scenario A
GB21AC	Linear decrease in K; MSYR ₁₊ = 2.5%; need scenario C
GB21BA	Linear decrease in <i>K</i> ; MSYR ₁₊ = 1%; need scenario A
GB21BC	Linear decrease in <i>K</i> ; MSYR ₁₊ = 1%; need scenario C
GB22AA	Linear increase in <i>M</i> ; MSYR ₁₊ = 2.5%; need scenario A
GB22AC	Linear increase in <i>M</i> ; MSYR ₁₊ = 2.5%; need scenario C
GB22BA	Linear increase in <i>M</i> ; MSYR ₁₊ = 1%; need scenario A
GB22BC	Linear increase in <i>M</i> ; MSYR ₁₊ = 1%; need scenario C
GB23AA	Strategic surveys; MSYR ₁₊ = 2.5%; need scenario A
GB23AC	Strategic surveys; MSYR ₁₊ = 2.5%; need scenario C
GB23BA	Strategic surveys; MSYR ₁₊ = 1%; need scenario A
GB23BC	Strategic surveys; MSYR ₁₊ = 1%; need scenario C

d) Robustness trials for bowhead whales

Note: The last four rows reflect corrections of typos for $MSYR_{1+}$ values given in the draft meeting report (IWC, 2012).

Description of the different need scenarios and alternative future Canadian catches (see IWC, 2012, Table 4 of Annex F)

Need	Description
scenario	
Humpback whates	
Α	Need envelop: [10, 15, 20–20 over years 18–100]
В	Need envelop: [10, 15, 20–40 over years 18–100]
С	Need envelop: [10, 15, 20–40 over years 18–100]
D	Need envelop: [20, 25, 30, 20–50 over years 18–100]

Bowhead whales	
Α	Need envelop: [5 -> 5 over 100 years]
В	Need envelop: [5 -> 10 over 100 years]
С	Need envelop: [5 -> 15 over 100 years]
Alternative future Canadian catches	
Α	[5 -> 5 over 100 years]
В	[5 -> 10 over 100 years]
C	[5 -> 15 over 100 years]
D	[2.5 -> 2.5 over 100 years]