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ABSTRACT 
A three-stock model with feeding and breeding ground interchange was proposed at IWC 64 for the assessment of 
Southern Hemisphere humpback whale breeding stocks D (West Australia), E1 (East Australia) and Oceania, with the 
aim of addressing some inconsistencies that arose in the single-stock assessments. First a two-stock (D+E1) and then a 
three-stock model with only mixing of stocks on the feeding grounds were developed, but it was found that neither 
removed these inconsistencies. It was found, however, that substantial improvements could be obtained by shifting the 
customary Antarctic stock boundaries to allow for more of the Antarctic catches to be allocated to breeding stock D. This 
paper presents the results of the single-stock, two-stock and three-stock models for both the original Antarctic 
boundaries, as well as the proposed new boundaries. The aim of the paper is to illustrate the effect of moving the 
boundaries and to provide a platform for further discussion and development at IWC 65. 

INTRODUCTION 

Paper SC/64/SH29 presented preliminary results for three single stock models for the respective West Australian 
(D), East Australian (E1) and Oceania (O) breeding stocks. Two inconsistencies of concern were evident: 

1. The reference case trend and abundance data used for the West Australian breeding Stock (Breeding 
Stock D, or BSD) comprised an absolute abundance estimate (Hedley et al. 2011) and a relative 
abundance series (Hedley et al. 2011). The model-predicted population trajectory was unable to 
simultaneously fit this absolute abundance estimate as well as reflect the high growth rate suggested by 
the relative abundance series. 

2. Haplotype data give an indication of the minimum size a population under study could have realistically 
been in the past. Constraints in the model do not allow the model estimated population trajectory to go 
below this Nmin value. It was found that the minimum population size the model predicted for the Oceania 
breeding stock (BSO) violated the Nmin constraint, i.e. if the constraint was removed from the model, the 
other data led to a posterior median population trajectory went below this Nmin constraint. 

It was suggested at IWC 64 that feeding and breeding ground interchange between the breeding stocks might help 
resolve these inconsistencies. A model was proposed that allowed for (a) migration of whales from one breeding 
stock to another on the breeding grounds, and (b) movement of the whales on the feeding grounds so that catches 
traditionally associated with one stock might in part  be allocated to another stock as well.  

The authors proposed to undertake the development of this model in three steps: (1) a two-stock model between D 
and E1, (2) a three-stock model for D, E1 and Oceania, with only the feeding ground interchange, since it was 
assumed that the feeding ground interchange would have a more substantial effect on the model results than the 
relatively small breeding ground interchange indicated by tag-recapture data, so that this would therefore be a 
simpler but nevertheless good starting place, and (3) update the three-stock model from (2) to include breeding 
ground interchange. 

It was found, however, that neither the two-stock model for D and E1, nor the three-stock model with feeding 
ground interchange provided any substantial resolution of the inconsistencies mentioned above. It was considered 
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unlikely that including breeding-ground interchange would improve the situation, since such interchange rates 
seemed likely to be low. 

Given the nature of the inconsistencies, the hypothesis that the somewhat arbitrary boundaries used for allocating 
the Antarctic catches to the different breeding stocks might be the root of the problem came under consideration. 
Both the West and East Australia populations must have been depleted to fairly low numbers historically in order 
to experience the high growth rate indicated by the trend data. If not enough catches are allocated to BSD with the 
current Antarctic boundaries, this will lead to less extreme depletion levels in the model, and might explain why 
the model-predicted population trajectory cannot reflect the high increase rate suggested by the data. Similarly, 
too many catches allocated to the Oceania stock could explain why the model-predicted population went below 
the biologically realistic minimum population size indicated by genetic data. Therefore it seemed reasonable to 
investigate whether moving the Antarctic boundaries might be a better way to resolve the inconsistencies. 

A total of 16 different Antarctic catch boundaries were explored, and it was found that it was possible to obtain a 
much better fit to the BSD data without a substantial loss of fit to the BSE1 data by moving the boundaries. The 
results of these 16 models are not presented here, but they indicated that moving the D-E1 boundary from 120E to 
150E, and moving the E1-O boundary from 170E to 150W yielded the best results. The single-stock models, the 
two-stock (D and E1) model and three-stock model (D, E1 and O) were run for the new boundaries. Diagrammatic 
representations of the two-stock and three-stock models are given in Figure B. 2 of Appendix B. Results are 
presented in this paper for the new boundaries, as well as for the old boundaries for comparison purposes. 

The purpose of this paper is to illustrate the improvement of the model fits (in particular for BSD) obtained by 
shifting the boundaries, and hence to create a platform for further discussion at IWC 65 regarding the  boundaries 
for and development of the models. Mixing proportions for the Antarctic feeding grounds are available (Pastene et 
al., 2012) and give the proportion of animals from the different stocks occurring in each feeding area. These 
proportions will have to be revised given these suggested new Antarctic boundaries. It is suggested that the 
revision occurs once the sub-committee has had a chance to review the findings presented in this paper and has 
come to an agreement regarding the most appropriate placement of the Antarctic boundaries. 

DATA 

Historic catch data 
There are two sets of historic catch data, both of which are available from Allison’s database (C. Allison, pers. 
commn): 

i) Catches north of 40°S 

These catches are given by location. Additionally there are some Russian catch data available by 10 degree 
longitude and latitude bands. The allocations of these catches to the breeding stocks considered in this assessment 
are described below. 

Breeding stock D 

Those labelled “Aust W” in the database have been allocated to BSD. Note that catches labelled “IndOcW” 
have been assumed to be associated with BSC. Russian catches taken between 80E and 130E have been 
allocated to BSD (a total of 120 catches).  

Breeding Stock E1and Oceania 

The catches for E1 and Oceania are given by landing station. Catches landed at LochTay, Tangalooma, 
Byron Bay and Rakiura have been allocated to BSE1. Catches landed at New Zealand, Kaikoura, Great 
Barrier Island, Whangamumu, Bay of Island, Norfolk Island, Tonga and Polynesia have been allocated to the 
Oceania breeding stock. Catches taken in the Cook Strait and Tory Channel have been split equally between 
BSE1 and Oceania. 

The resulting catch series are given in Table A. 1 of the Appendix. 
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ii) Catches south of 40°S 

These catches are given for 10 degree longitude bands, as shown in Table A. 2. 

Abundance and trend data 
The data used in this assessment are listed in the Appendix. A summary is given below of which data where used 
for the base case and which were used for independent consistency checks, as recommended at IWC 64. Note that 
not all the data listed in the Appendix have been explored in these initial assessments. 

Table 1: Summary of the assessment input data 

Breeding ground data Reference Case Sensitivity Consistency 
Check 

Breeding Stock D    

Absolute abundance Hedley et al. (2011) X   
Relative abundance Hedley et al. (2011)  X   
Relative abundance Bannister and Hedley (2001)   X  
Relative abundance Chittleborough (1965)    X 
Min number of haplotypes Olavarria et al. (2007) X   
Breeding Stock E1    

Absolute abundance Noad et al. (2011)  X   
Absolute abundance  Paton et al. (2011)    X 
Relative abundance Noad et al. (2011)  X   
Relative abundance Chittleborough (1965)    X 
Relative abundance Forestell et al. (2011)    
Mark-recapture (photo-ID) Forestell et al. (2011)    X 
Mark-recapture (genetic) Jackson et al. (2012)   X 
Mark-recapture (photo-ID) Paton et al. (2011)   X 
Min number of haplotypes Olavarria et al. (2007); Valsecchi et al. 

(2010) 
X   

Oceania breeding stock    

Mark-recapture (photo-ID) Constantine et al. (2011)  X   
Absolute abundance Constantine et al. (2011)2   X 
Mark-recapture (genetic) Jackson et al. (2012)   X 
Min number of haplotypes Olavarria et al. (2007) X   
Data informing interchange    

Mark-recapture (photo-ID) Pacific Whale Organisation – D and E1    
Mark-recapture (genetic) Anderson et al.(2007) – D and E1    
Mark-recapture (genetic) Jackson et al. (2012) – E1 and Oceania    
Feeding ground data Reference Case Sensitivity Consistency 

Check 

Relative abundance Matsuoka et al. (2011)  X X 
Relative abundance Branch (2011)  X X 
Mixing proportions Pastene et al. (2013)    

 

                                                           
2 The absolute abundance estimate derived from the mark recapture data is used to set bounds on the uniform prior for the log 
target abundance estimate in the SIR process. The original mark recapture data are used in the likelihood function itself. 
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METHODS 

Population dynamics 
The population dynamics are given by the following equation:  
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where 

 i
yN  is the number of whales in the breeding population i at the start of year y, 

 ir  is the intrinsic growth rate (the maximum per capita the population can achieve when its size is 

very low) of breeding population i, 

 iK  is the carrying capacity or pristine population level of breeding population i, 

 µ  is the “degree of compensation” parameter; this is set at 2.39, which fixes the level at which MSY 

is achieved at MSYL = 0.6K, as conventionally assumed by the IWC SC, and 

 i
yC  is the total catch (in terms of breeding population i animals) in year y. 

Bayesian estimation framework 

Priors 

Prior distributions are defined for the following parameters: 

i) ri ~ U[0, 0.106] 3 

ii) ]4ln,4[ln~~ln ,
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The target abundance estimate is fitted to the model-predicted number of whales for breeding population i.
 

The uninformative r prior is bounded by zero (negative rates of growth are biologically implausible) and 0.106 
(this corresponds to the maximum growth rate for the species agreed by the IWC Scientific Committee (IWC, 

2007)). The prior distribution from which target abundance estimate obsi
ettN ,

arg
~

 is drawn at random is uniform on a 

natural logarithmic scale. The upper and lower bounds, whose only purpose is to render the computations more 
efficient,  are set by the CV of the abundance estimate multiplied by four.  

Using the randomly drawn vector of values of obsi
ettN ,

arg
~  and ri, a downhill simplex method of minimization is used 

to calculate Ki such that the model estimate of i
ettN arg  is identical to the randomly drawn value obsi

ettN ,
arg

~
. 

For each simulation, using the ri and calculated Ki values, the available data are used to assign a likelihood to that 
particular combination. Details for calculating the components of the negative log likelihood are given below. 

Priors for the mixing proportion parameters which come into play in the two- and three-stock models, and 
described in Appendix B. 

                                                           
3 Note that an importance function was used for rE1 to improve sampling efficiency. Details are given later. 
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Likelihood function 

Absolute abundance data 

Given an absolute abundance estimate,
 

obs
ettN arg , this is assumed to be log-normally distributed with the log of the 

estimate as the mean and the CV as the standard deviation4. Thus the negative log likelihood contribution is: 

 ( )2argarg2 lnln
2

1
ett

obs
ett NN −

σ
 (2) 

 where 
obs

ettN arg  
is the absolute abundance estimate obtained from observations, 

ettN arg  
is the model-estimated population size for the year of the abundance estimate, and 

2σ  is the variance of obs
ettN argln .. 

Relative abundance data 

These estimates are given in a series spanning several years. Each year has a relative abundance index Iy, obtained 
from observations.  It is assumed that this index is log-normally distributed about its expected value: 

 yeqNI yy
ε=  (3) 

where 

yI   is the relative abundance estimate for year y, 

q   is a constant of proportionality5, 

yN
 

is the model estimate of observed population size at the start of year y, and 

yε   is from ( )2,0 σN   (see Equation (4) below). 

The σ  parameter is the residual standard deviation, which is estimated in the fitting procedure by its maximum 
likelihood value: 

 ( )∑ −−=
y

yy NqIn
2

lnlnln/1σ̂  (4) 

where 
n   is the number of data points in the series, and  
q    is a constant of proportionality, estimated by its maximum likelihood value: 

 ( )∑ −=
y

yy NInq lnln/1ˆln  (5) 

The negative log-likelihood component for the relative abundance data is given by:  

 ( )∑ −−+
y

yy NqIn
2

2 lnlnln
2

1ln
σ

σ  (6) 

                                                           
4 If N is assumed to be log-normally distributed, then lnN is normally distributed with some mean μ and standard deviation σ. 
The median value of N is then µe  while the CV of N is given by 1

2
−σe . Since the CV of N is relatively small, σ has been 

approximated here by the value of the CV of N. 
5 When plotting the relative abundance series along with the model-predicted median population values to assess how good the 
fit is, the relative abundance series each need to be scaled by a factor of q. In the SIR process, once the original sample is 
resampled (based on the weights calculated using the desired input data), the likelihood components for all the data sets (even 
those not used in the final likelihood calculation) can be computed for each of the n2 resampled parameter combination of [r, 
lnNtarget]. The likelihood component of each relative abundance series will have an associated q value, giving n2 q values 
(representing samples from the posterior distribution of q), from which the median value can be computed.  This value is then 
used to scale the relative abundance series for plotting, as has been done in the figures of this document.   
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In the Bayesian context, q and σ  are “nuisance parameters, i.e. parameters that need to be estimated but are not 
of interest themselves (McAllister et al., 1994). Walters and Ludwig (1994) show that the above approach is 
essentially a shortcut to avoid integrating over the prior distributions parameters and corresponds to the 
assumption that the q prior is uniformly distributed in log-space, and that the σ prior is proportional to σ -3. 

Mark recapture data 

These data are given in the form a matrix showing counts of animals that were seen in a specific year and re-seen 
in a subsequent year. The method for incorporating this information into the likelihood is given below.  

The capture-recapture data give: 

yn , the number of animals captured in year y, and 

yym ′, , the number of animals captured in year y that were recaptured in year y´. 

If yp is the probability that an animal is seen in a region in year y, then the number of animals captured in year y 
is given by: 

 yyy Npn =  (7) 

where yN  is the total (1+) population. The model predicted number of animals captured in year y that were 
recaptured in year y´ is given by: 

 )'(
',ˆ yyM

yyyyy eNppm −−
′=  (8) 

where M is the natural mortality rate (set here to equal 0.03 yr -1 as recommended by the IWC SC). 

The probability of a model-predicted ',ˆ yym , given the observed ', yym , is determined assuming a Poisson 
distribution6, with the associated likelihood contribution given by: 
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Finally the component for the negative of the log-likelihood for capture-recapture data is then given by: 
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where y0 is the first year of captures and yf is the last year of recaptures. 

Note that when compiling the capture-recapture matrices, if an animal is re-seen a second time, the first resighting 
is treated as a new sighting that is first re-seen at the second resighting. 

SIR 

The negative log likelihood is then converted into a likelihood value (L). The integration of the prior distributions 
of the parameters and the likelihood function then essentially follows the Sampling-Importance-Resampling (SIR) 
algorithm presented by Rubin (1988). For a vector of parameter values iθ , the likelihood of the data associated 

with this vector of parameters ( L ) as described above is calculated and stored as L~ . This process is repeated 
until an initial sample of n1 iθ s is generated.  

This sample is then resampled with replacement n2 times with probability equal to weight wj, where:  

                                                           
6 The equations given here imply a multinomial distribution. However, because the annual capture probabilities are so small, 
the Poisson distribution is an adequate and convenient approximation. 
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The resample is thus a random sample of size n2 from the joint posterior distribution of the parameters (Rubin, 
1988).  

Importance function for BSE1 

The trend data for BSE1 (Noad et al., 2011) are highly informative, and as such high rE1 values have a much 
higher likelihood associated with them and have a much better chance of being resampled. Since rE1 is sampled 
from a uniform prior on the interval [0,0.106], small values of rE1 will form a substantial proportion of the initial 
sample of n1, even though they are not likely to be chosen in the resampling process. This leads to sampling 
inefficiency and a high number of duplicates (where the same high r values are sampled repeatedly). A very large 
initial sample has to then be drawn in order to generate enough samples with high r values to be able to resample 
without a high number of duplicates. In order to increase the sampling efficiency, an importance function was 
used. This function increases the likelihood of sampling high rE1 values and reduces the number of essentially 
wasted low r values in the sample. To counter the fact that the resulting distribution of the n1 values of rE1 
sampled is no longer uniform as required by the uniform prior distribution, the final likelihood values are 
weighted up in the same proportion as the probability of picking a particular rE1 in the initial sample was weighted 
down.  

The importance function used is shown in Figure 1 below. Given this function, the likelihood associated with any 
sample containing an rE1 valued between 0 and 0.05 is up-weighted by a factor of 20, the likelihood associated 
with any sample containing an rE1 valued between 0.05 and 0.07 is up-weighted by a factor of 5, etc. 

 
Figure 1: Importance function used when sampling for rE1. The horizontal axis shows the step values of rE1 at which the 

importance function increases, and the vertical axis shows the probability of accepting an rE1 sample from a 
particular range. In other words, if a value between 0 and 0.05 is drawn from the uniform prior, it has a 95% chance 
of being discarded. 

Nmin constraints 

The assumption for these assessments is that given a minimum number of haplotypes, h, for a specific region, the 
minimum population size for that region is given by 3*h. This offers a constraint below which values the model 
estimated population trajectory must not go. A penalty is added to the negative log likelihood to ensure that these 
constraints are not violated. 
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RESULTS 

The posterior median values and their 90% probability intervals for r, K, Nmin, N2012/K and N2040/K are given in 
Table 2. Results are given for the single-stock, two-stock and three-stock models for BSD and BSDE1 (Table 2(a) 
and (b)), and for the single-stock and three-stock model for BSO (Table 2(c)). Results are presented for both the 
old and the new Antarctic catch boundaries. Posterior median values and their 90% probability intervals for the 
interchange parameters in the two-stock and three-stock models are given in Table 2(d). 

Plots of the median trajectories with the 90% probability envelopes are given in Figure 2 (BSD), Figure 3 (BSE1) 
and Figure 4 (BSO). Fits to abundance and trend data are shown where such data are available for the stock in 
question. Fits to mark-recapture data in the form of cumulative resightings are shown in Figure 4 (BSE1 fits to the 
Forestell et al. (2011) data and the Jackson et al. (2012) (sexes combined) data) and Figure 6 (BSO fits to the 
Constantine et al.(2011) and the Jackson et al. (20120 (sexes combined) data). 

DISCUSSION 

The primary purpose of this document is to report on results of the model put forward at IWC 647 and to illustrate 
the effects of moving the Antarctic catch boundaries, in order to facilitate further discussion at IWC 65. In light of 
this, discussion will aim to highlight points that should be noted and discussed further by the sub-committee. 

Breeding Stock D 

Figure 2: Moving the Antarctic boundaries results in a substantial improvement for the BSD fit to trend data, in 
particular to the Bannister and Hedley (2001) relative abundance series (although the model is not (here) fit to this 
series directly). This boundary shift is supported by the analyses of the genetic data from the JARPA and JARPA 
II programmes, which indicate a large proportion (24%) of BSD whales in the region from 120E to 170E (T. 
Kitakado, pers. commn). The fit to the Hedley et al. (2011) relative abundance series is still fairly poor. Moving 
from the single-stock to the two-stock and three-stock models does not seem to make a substantial difference to 
the model results. The estimated intrinsic growth rate parameter does change (Table 2(a)), but the wide probability 
envelope about the estimate is a reflection of the fact that the data have not updated the prior for this parameter 
very much (see Figures B3 and B4). This will change if it is decided to also include the earlier time series of 
relative abundance estimates for BSD (Bannister and Hedley, 2001) in the likelihood. 

Breeding Stock E1 

Figure 3: Fits to the Noad et al. (2011) relative abundance are exceptionally good in all cases. This abundance 
series is highly informative, resulting in a consistently high estimate of the growth rate with a very narrow 
probability envelope. A point worth consideration is to what extent the Noad et al. (2011) data will dominate the 
other likelihood components in the two-stock and three-stock models. It is interesting to note that, although no 
mark-recapture data have been incorporated into the likelihood, the Forestell et al. (2011) mark-recapture data 
appears to be consistent with the model results, but the Jackson et al. (2012) fits are poor (Figure 4). For these 
cumulative resightings plots the points to consider are most likely the last in the series. The resightings are 
accumulated over the years and as such the last points should ideally lie within the probability envelope for the 
model estimate. For the Jackson et al. (2012) data, the observed cumulative resightings are substantially higher 
than the model estimate, suggesting that the model-estimated population is too large. 

Breeding Stock O 

Figure 4: The problem with the Nmin constraint seems to have remained, as the median population trajectory goes 
below the Nmin value if the penalty is removed from the likelihood. Another way of looking at the effect of this 
constraint is to consider what fraction of the initial sample of n1 violate the Nmin constraint (and therefore are 
unlikely to be resampled given the Nmin penalty). For the single-stock BSO model with the old boundaries, 31% of 
the samples violated the Nmin constraint. With the new boundaries, this decreases to 18%. Therefore while the Nmin 
constraint is clearly still raises a problem, the new boundaries have ameliorated it somewhat, Fits to the 
Constantine et al. (2011) data are shown in Figure 6. The observed cumulative resightings are consistently higher 
                                                           
7 It is noted again that the three-stock model presented here is an adapted version of the model proposed at IWC64, since 
breeding ground interchange has not been included at this stage yet. 
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than the model estimate, suggesting that the model-estimated population is too large. Fits to the Jackson et al, 
(2012) data are good, so although these data have not been included in the likelihood, they appear to be consistent 
with the model. 

General points for discussion and further model development 

The plausibility of the existing and proposed new Antarctic boundaries should be discussed in light of the 
improved fit to the BSD data obtained by shifting the boundaries. Once a reference set has been decided on, 
reanalyses of the Pastene et al. (2011) mixing proportions in the Antarctic feeding grounds should be undertaken 
to obtain estimates of the proportions of the three stocks in the new feeding areas. These estimates can be included 
in the likelihood when fitting the two-stock and three-stock models. 

Much of the information on the stocks has yet to be included in the likelihood when fitting the model. This needs 
to be discussed at IWC 65 to specify updated reference cases. These in turn should result in more updating of the 
priors for intrinsic growth rate and stock mixing parameters than is broadly evident (aside from r for BS E1) from 
the plots in Figures B3 and B4. 

Consideration should be given to potential errors in the genetic mark recapture data which could result in false 
negatives and so bias results. 

Breeding ground interchange has not yet been implemented at this stage. Once a reference case feeding ground 
catch allocation has been decided on, the breeding ground interchange will be explored. 
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Table 2(a)-(d): Posterior median values of key model parameters are given, with their 90% probability intervals, for the various models run. Table 2(a) gives the results for BSD, Table 2(b) those 
for BSE1 and Table 2(c) those for BSO. Table 2(d) gives the same posterior statistics for the mixing proportion parameters the two-stock and three-stock models. 

(a) BSD   r K Nmin N2012/K N2040/K 

Old boundaries 
Single-stock 0.047 [0.005,0.100] 33421 [24420,66218] 11712 [3166,25475] 0.908 [0.442,1.000] 0.996 [0.496,1.000] 

Two-stock 0.056 [0.012,0.098] 30341 [22384,55051] 8847 [2061,20880] 0.944 [0.539,1.000] 0.999 [0.682,1.000] 

Three-Stock 0.054 [0.010,0.093] 32936 [23447,56833] 11438 [5102,21333] 0.968 [0.476,1.000] 0.999 [0.590,1.000] 

New boundaries 
Single-stock 0.056 [0.008,0.099] 36486 [28347,72227] 4759 [1065,21091] 0.831 [0.415,1.000] 0.996 [0.516,1.000] 

Two-stock 0.068 [0.023,0.102] 31706 [24165,52949] 4400 [930,14997] 0.926 [0.549,1.000] 1 [0.816,1.000] 

Three-Stock 0.060 [0.006,0.099] 33060 [25634,74051] 5269 [1431,23786] 0.91 [0.403,1.000] 0.999 [0.485,1.000] 
 

 

(b) BSE1   r K Nmin N2012/K N2040/K 

Old boundaries 
Single-stock 0.105 [0.103,0.106] 25666 [25631,25775] 230 [203,260] 0.632 [0.578,0.685] 1 [1.000,1.000] 

Two-stock 0.105 [0.103,0.106] 26504 [21792,29691] 204 [171,242] 0.624 [0.543,0.730] 1 [0.999,1.000] 

Three-Stock 0.105 [0.103,0.106] 28121 [22948,32299] 222 [193,262] 0.594 [0.506,0.690] 1 [0.999,1.000] 

New boundaries 
Single-stock 0.105 [0.103,0.106] 27477 [27442,27598] 230 [204,264] 0.597 [0.548,0.654] 1 [0.999,1.000] 

Two-stock 0.105 [0.104,0.106] 29015 [23320,34271] 224 [199,260] 0.572 [0.485,0.696] 1 [0.999,1.000] 

Three-Stock 0.105 [0.103,0.106] 28890 [23601,33797] 226 [198,261] 0.574 [0.495,0.690] 1 [0.999,1.000] 
 

 

(c) BSO   r K Nmin N2012/K N2040/K 

Old boundaries 
Single-stock 0.035 [0.005,0.058] 18169 [16545,23338] 827 [375,2393] 0.196 [0.124,0.257] 0.483 [0.144,0.832] 

Two-stock   - 
 

-   - 
 

-   - 

Three-Stock   -   -   -   -   - 

New boundaries 
Single-stock 0.038 [0.005,0.059] 5803 [5038,9372] 750 [367,2379] 0.592 [0.312,0.742] 0.929 [0.359,0.993] 

Two-stock 0.040 [0.010,0.057] 16995 [11434,25497] 675 [388,2112] 0.231 [0.128,0.336] 0.647 [0.174,0.886] 

Three-Stock 0.044 [0.007,0.067] 6495 [3306,12686] 669 [355,2230] 0.533 [0.254,0.955] 0.926 [0.314,1.000] 
 

 

(d) Interchange   βDE βED γ γ* βEO βOE 

Old boundaries Two-stock 0.044 [0.003,0.234] 0.368 [0.030,0.840]   -   -   -   - 

Three-Stock 0.418 [0.007,0.832] 0.169 [0.012,0.410] 0.108 [0.005,0.448] 0.387 [0.100,0.773] 0.238 [0.045,0.637] 0.036 [0.002,0.125] 

New boundaries Two-stock 0.071 [0.006,0.305] 0.393 [0.048,0.832]   -   -   -   - 

Three-Stock 0.271 [0.011,0.818] 0.161 [0.029,0.456] 0.184 [0.024,0.536] 0.323 [0.088,0.642] 0.24 [0.015,0.460] 0.065 [0.005,0.300] 
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BSD 1. Single Stock 2. Two-Stock (BSD and BSE1) 3. Three-Stock (BSD, BSE1 and BSO) 
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Figure 2: Posterior median population trajectories for BSD, showing the trajectories and the 90% probability envelopes. Results are shown for single-stock, two-stock and three-stock models using the old 

boundaries, and are repeated for the new boundaries. Plots show fits to the Chittleborough (1965) relative abundance series (open circles), the Bannister and Hedley (2001) relative abundance 
series (crosses), the Hedley et al. (2011) relative abundance series (grey circles) as well as the Hedley et al. (2011) absolute abundance estimate (black triangle). In all cases the model was fit to 
the Hedley et al. (2011) relative and absolute abundance estimates. The Chittleborough (1965) and Bannister and Hedley (2001) relative abundance series are shown as consistency checks. The 
trajectory to the right of the vertical dashed 2012 line shows projection into the future under the assumption of zero catch. 
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BSE1 1. Single Stock 2. Two-Stock (BSD and BSE1) 3. Three-Stock (BSD, BSE1 and BSO) 
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Figure 3: Posterior median population trajectories for BSE1, showing the trajectories and the 90% probability envelopes. Results are shown for single-stock, two-stock and three-stock models using the 

old boundaries, and are repeated for the new boundaries. Plots show fits to the Chittleborough (1965) relative abundance series (open circles), the Noad et al. (2011) relative abundance series 
(grey circles) as well as the Noad et al. (2011) absolute abundance estimate (black triangle). In all cases the model was fit to the Noad et al. (2011) relative and absolute abundance estimates. 
The Chittleborough (1965) relative abundance series is shown as a consistency check. The trajectory to the right of the vertical dashed 2012 line shows projection into the future under the 
assumption of zero catch. 
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BSE1 1. Single Stock 2. Two-Stock (BSD and BSE1) 3. Three-Stock (BSD, BSE1 and BSO) 
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Figure 4: Plots showing model fit to mark-recapture data. Note that these mark-recapture data have not been included in the likelihood, and the fits are shown as a consistency check. The cumulative 

observed  re-sightings are marked by X’s. The median estimates are shown by the thick line and their 90% probability envelope is indicated by the shaded region. 
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BSO 1. Single Stock 2. Two-Stock (BSD and BSE1) 3. Three-Stock (BSD, BSE1 and BSO) 
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Figure 5: Posterior median population trajectories for BSO. The 90% probability envelopes are indicated by the grey areas. Results are shown for single-stock and three-stock models using the old 

boundaries, and are repeated for the new boundaries. A two-stock model for BSE1 and BSO was not undertaken for this analysis. In all cases the model was fit to the Constantine et al. (2011) 
mark-recapture data. The dashed curves show the posterior median population trajectory for the case when the model was run without the Nmin constraint to illustrate the impact which this 
constraint has. The Constantine et al. (2011) absolute abundance estimate is shown as a consistency check. The trajectory to the right of the vertical dashed 2012 line shows projection into the 
future under the assumption of zero catch. 

 

 

 
 

 
 1(a) BSO (single-stock w ith  

1900 1920 1940 1960 1980 2000 2020 204

0
5

10
15

20
25

 

 
 

 
 3(b) BSO (single-stock w ith  

1900 1920 1940 1960 1980 2000 2020 204

0
5

10
15

20
25

 

 
 

 
 1(b) BSO (single-stock w ith  

1900 1920 1940 1960 1980 2000 2020 204

0
5

10
15

 

 
 

 
 3(b) BSO (single-stock w ith  

1900 1920 1940 1960 1980 2000 2020 204

0
5

10
15



SC/65/SH01 
 

16 
 

BSO 1. Single Stock 2. Two-Stock (BSD and BSE1) 3. Three-Stock (BSD, BSE1 and BSO) 
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Figure 6: Plots showing model fit to mark-recapture data. Note that only the Constantine et al. (2011) data has been included in the likelihood. The fit to the Jackson et al. (2012) data (sexes combined) 

has been shown as a consistency check. The observed cumulative re-sightings are marked by X’s. The median estimates are shown by the thick line and their 90% probability envelope is 
indicated by the shaded region. 
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APPENDIX A: CATCH, ABDUNANCE AND TREND DATA 

Table A. 1: Historic catches taken north of 40°S from Allison’s database (C.Allison, pers. commn). Note that for the assessments in 
this paper, the Cook Strait catches have been split equally between the East Australia and Oceania stocks. 

Year BSD BSE1 Oceania Cook Strait Year BSD BSE1 Oceania Cook Strait 

1890 0 0 8 0 1935 0 0 0 57 

1891 0 0 8 0 1936 3076 0 0 69 

1892 0 0 8 0 1937 3250 0 0 55 

1893 0 0 8 0 1938 917 0 0 75 

1894 0 0 8 0 1939 0 0 0 80 

1895 0 0 8 0 1940 0 0 0 107 

1896 0 0 8 0 1941 0 0 0 86 

1897 0 0 8 0 1942 0 0 0 71 

1898 0 0 8 0 1943 0 0 0 90 

1899 0 0 8 0 1944 0 0 0 88 

1900 0 0 8 0 1945 0 0 0 107 

1901 0 0 8 0 1946 0 0 0 110 

1902 0 0 8 0 1947 2 0 0 101 

1903 0 0 8 0 1948 4 0 0 92 

1904 0 0 8 0 1949 190 0 3 141 

1905 0 0 8 0 1950 388 0 0 79 

1906 0 0 8 0 1951 1224 0 0 111 

1907 0 0 8 0 1952 1187 600 0 121 

1908 0 0 8 0 1953 1300 700 0 109 

1909 0 0 16 0 1954 1320 718 0 180 

1910 0 0 41 36 1955 1126 720 0 112 

1911 0 0 41 36 1956 1119 720 166 127 

1912 234 30 27 36 1957 1120 721 165 155 

1913 993 348 56 36 1958 967 720 136 183 

1914 1968 0 57 36 1959 700 810 270 214 

1915 1297 0 70 36 1960 545 810 321 226 

1916 388 0 25 57 1961 580 731 211 55 

1917 0 0 58 36 1962 548.2 173 12 24 

1918 0 0 50 40 1963 87 0 0 9 

1919 0 0 72 47 1964 2 0 0 0 

1920 0 0 64 43 1965 75.8 0 0 0 

1921 0 0 55 34 1966 30 0 0 0 

1922 155 0 40 17 1967 12 0 0 0 

1923 166 0 62 17 1968 0 0 0 0 

1924 0 0 55 52 1969 0 0 0 0 

1925 669 0 48 48 1970 0 0 0 0 

1926 735 0 35 43 1971 0 0 0 0 

1927 996 0 74 53 1972 0 0 0 0 

1928 1035 0 50 55 1973 0 0 3 0 

1929 0 0 53 49 1974 0 0 4 0 

1930 0 0 31 47 1975 0 0 8 0 

1931 0 0 48 61 1976 0 0 4 0 

1932 0 0 0 18 1977 0 0 4 0 

1933 0 0 3 41 1978 0 0 11 0 

1934 0 0 0 52 Total 28406 7801 2601 4060 
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Table A. 2: Historic catches taken south of 40°S from Allison’s database (C.Allison, pers. commn), given in 10 degree longitude bands. 
Year 60-

69E 
70-

79E 
80-

89E 
90-

99E 
100-

109E 
110-

119E 
120-

129E 
130-

139E 
140-

149E 
150-

159E 
160-

169E 
170-

180E 
180-

170W 
169-

160W 
159-

150W 
149-

140W 
139-

130W 
129-

120W 
119-

110W 
109-

100W 
1908 217 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1909 118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1910 83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1912 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1913 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1914 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1915 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1916 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1917 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1918 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1919 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1920 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1921 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1922 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1923 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1924 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1925 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1926 0 0 0 0 0 0 0 0 0 0 0 82 0 0 0 0 0 0 0 0 
1927 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 
1928 11 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 
1929 11 0 0 0 0 0 0 0 0 0 0 775 0 0 0 0 0 0 0 0 
1930 3 1 16 4 3 0 1 0 32 49 3 55 96 0 0 0 0 0 0 0 
1931 0 109 51 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1932 2 1 38 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1933 20 81 457 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1934 9 83 964 266 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1935 0 1 744 196 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 
1936 0 15 597 755 68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1937 1 56 337 125 188 129 32 0 0 0 0 0 0 0 0 0 0 0 0 0 
1938 0 0 0 173 482 180 24 24 0 0 0 0 0 0 0 0 0 0 0 0 
1939 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1940 0 0 0 0 0 0 342 342 342 342 342 342 342 0 0 0 0 0 0 0 
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Year 60-
69E 

70-
79E 

80-
89E 

90-
99E 

100-
109E 

110-
119E 

120-
129E 

130-
139E 

140-
149E 

150-
159E 

160-
169E 

170-
180E 

180-
170W 

169-
160W 

159-
150W 

149-
140W 

139-
130W 

129-
120W 

119-
110W 

109-
100W 

1941 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1942 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1943 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1944 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1945 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1946 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1947 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1948 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1949 0 0 516 48 101 10 109 30 760 118 0 0 0 0 0 0 0 0 0 0 
1950 0 5 351 599 160 0 0 0 0 0 0 85 86 316 0 0 1 0 0 0 
1951 0 104 268 0 358 170 232 0 1 0 66 103 189 37 0 0 1 0 0 0 
1952 1 2 0 190 0 0 0 0 0 0 166 216 135 13 0 0 0 0 0 0 
1953 0 0 0 259 0 0 0 0 0 0 0 0 14 136 0 0 0 0 0 0 
1954 0 0 0 20 6 0 0 2 0 749 5 17 167 269 69 2 0 0 0 0 
1955 0 111 274 162 110 508 411 769 416 777 0 0 0 278 56 0 0 0 0 0 
1956 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 3 27 39 
1957 3 67.3 510.2 977.8 339.5 12 0 30 19 38 133 0 0 0 35 27 29 76 31 0 
1958 9.8 287.5 1214 652 240 1275.9 882.1 104.7 157.1 185.7 525.8 209.4 0 0 0 0 0 0 0 0 
1959 5.2 6.4 16.9 91.1 97.7 41 44.8 1043.5 4057.1 3673 2228.5 998.7 317.8 112.8 73.2 106.8 73.2 73.2 74.1 7 
1960 2 49.6 54.2 77.6 295.5 171.3 71 163.7 742.3 1184.3 3703.8 2630.2 740 962.5 565.3 508.3 428.6 292.9 0 0 
1961 0 2 33 145 63 120 14 14 61 436 581 342 123 226 1010 401 452 189 54 44 
1962 21 99 151 906 417 118.2 58.2 18.2 35.4 39.7 302.2 9.2 10 49.5 87.7 66.1 63.5 18.1 18.1 24.4 
1963 46 33.2 105.4 116 34.8 23.5 0.2 1.2 23.6 20.9 225 13 0 0 0 0 0 0 0 0 
1964 5 11 5.6 31.2 19 17 0.9 2.8 11.3 26.2 45 0 0 0 0 0 0 0 0 0 
1965 0 6.5 10.6 51.5 14.3 8.8 8.8 12.6 43.6 26.6 80 97.1 85.3 474.6 1.3 1 0 0 0 0 
1966 2 4 24 41 25 26 7 4 3 1 11 14 16 93 118 26 0 0 0 0 
1967 5 6 19 26 21 5 7 0 1 11 12 2 1 6 47 57 0 0 0 0 
1968 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1969 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1970 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1971 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 
1972 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 
Total 575 1143 6757 5997 3064.8 2815.7 2245 2561.7 6709.4 7677.4 8431.3 6023.6 2322.1 2973.4 2062.47 1195.2 1055.27 652.167 207.2 114.4 
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Breeding Ground Data 

Breeding Stock D 

Absolute abundance estimate 

An estimate of absolute abundance of 28,830 individuals (95% CI8 = 23,710-40,100) was computed from line transect 
aerial surveys conducted off Western Australia in 2008 and corrected for animals missed on the trackline (g(0) =0.41) 
(Hedley et al., 2011).  

Relative abundance estimates 

Table A. 3: BSD Relative Abundance Index I (Hedley et al., 2011). These are derived from three sets of aerial line transect 
surveys conducted in 1999, 2005 and 2008 (augmented with two shorter land-based surveys in 2005 and 2008) to 
estimate the population size of northward migrating whales. 

Year Estimate 95% CI 
1999 5,130 3,380-8,750 
2005 6,070 4,420-11,020 
2008 11,820 9,720-16,400 

 

 
Table A. 4: BSD Relative Abundance Index II (Bannister and Hedley, 2001). These are breeding ground relative abundance 

estimates from Bannister and Hedley (2001) for the period 1982 to 1994. No CV is available. 

Year Estimate 
1982 10.2 
1986 16.2 
1988 12.7 
1991 23.6 
1994 36.0 

 

 
Table A. 5: BSD Relative Abundance Index III (Chittleborough, 1965). Catch per unit effort data are available from four 

catchers operating on the west coast of Australia from June 25 to August 26 each year (Chittleborough, 1965) 
(Area IV: 70˚E-130˚E). No CVs are available. 

Year CPUE 
1950 0.475 
1951 0.424 
1952 0.347 
1953 0.353 
1954 0.351 
1955 0.244 
1956 0.178 
1957 0.146 
1958 0.123 
1959 0.090 
1960 0.062 
1961 0.055 
1962 0.051 

 

Minimum number of haplotypes 

Minimum number of haplotypes for BSD from Olavarría et al. (2007) is 53. 

  

                                                           
8 This 95% CI was converted into a rough CV by assuming that the estimate was log-normally distributed. An approximation of the 
standard error of the log of the estimate was obtained by computing 0.5*(ln(40100)-ln(23710))/1.96. The resulting value of 0.13 
was then taken to be the CV of the estimate (see footnote 4). 
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Breeding Stock E1 

Absolute abundance estimate 

i. BSE1 absolute abundance estimate I - Noad et al. (2011) 
A land-based survey was conducted at Point Lookout on the east coast of Australia over 8 weeks in June and 
July 2010. The average number of whales passing per 10h over the peak four weeks of the northward 
migration was 84.7 ± 3.2 whales. A correction for whales available but missed was applied using double 
blind counts, as well as other corrections for sighting heterogeneity (1.212 +/- 0.049, Dunlop et al., 2010). 
Using this correction the abundance estimate for 2010 was 14,522 whales (95% CI9 12,777 – 16,504) (Noad 
et al., 2011).  

ii. BSE1 absolute abundance estimate I I - Paton et al. (2011) 
From a multi-point mark-recapture estimate of absolute abundance in 2005 for the east coast of Australia. 
Estimate is 7,041 (95% CI = 4,075-10,008) (Paton et al., 2011). 

Relative abundance estimates 

Table A. 6: BSE1 Relative Abundance Index I (Noad et al., 2011): A count of northward migrating whales from land-based 
surveys conducted at Point Lookout and two other locations. The values give the number of whales passing per 
10h during four weeks of the peak migration. (M. Noad, pers. commn) and are as used for estimates of abundance 
provided by Noad et al., (2008), Noad et al., (2011). These data was used to in estimated annual rate of increase 
of 10.9%/year (95% CI = 10.5-11.3%/year) for a 24 year period (1984 to 2010) (Noad et al., 2011). 

Year Estimate 

1984 6.12 

1985 5.92 

1986 8.25 

1987 8.53 

1988 9.15 

1989 10.22 

1990 11.58 

1991 12.93 

1992 14.36 

1994 17.75 

1996 20.91 

1998 28.45 

1999 27.45 

2001 34.67 

2002 37.34 

2004 47.11 

2007 70.73 

2010 84.7 
 

 

                                                           
9 Similar to BSD, this 95% CI was converted into a rough CV by assuming that the estimate was log-normally distributed. An 
approximation of the standard error of the log of the estimate was obtained by computing 0.5*(ln(16504)-ln(12777))/1.96. The 
resulting value of 0.065 was then taken to be the CV of the estimate (see footnote 4). 
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Table A. 7: BSE1 Relative Abundance Index II (Chittleborough, 1965): Catch per unit effort data from two catcher boats 
operating on the east coast of Australia from June 10 to August 5 each year (Chittleborough, 1965) (Area V: 
130˚E-170˚W). No CVs are available. 

Year Estimate 

1953 0.97 

1954 0.76 

1955 0.78 

1956 0.7 

1957 0.71 

1958 0.75 

1959 0.74 

1960 0.52 

1961 0.23 

1962 0.69 
 

Mark-recapture data 

Table A. 8: BSE1 microsatellite genotypic mark-recapture data for males and females combined (Jackson et al., 2012). 
Sexes combined 1999 2000 2001 2002 2003 2004 

Total individual captures 4 72 187 222 154 126 

1999 X 0 0 0 0 0 
2000 

 
X 8 6 1 0 

2001 
  

X 12 8 5 
2002 

   
X 8 5 

2003 
    

X 5 
2004 

     
X 

 

 
Table A. 9: BSE1 microsatellite genotypic mark-recapture data for males only (Jackson et al., 2012). 

Males 1999 2000 2001 2002 2003 2004 
Total individual captures 2 38 96 128 84 80 

1999 X 0 0 0 0 0 
2000 

 
X 3 3 1 0 

2001 
  

X 6 4 3 
2002 

   
X 3 4 

2003 
    

X 4 
2004 

     
X 

 

 
Table A. 10: BSE1 microsatellite genotypic mark-recapture data for females only (Jackson et al., 2012). 

Females 1999 2000 2001 2002 2003 2004 
Total individual captures 2 34 91 94 70 46 

1999 X 0 0 0 0 0 
2000 

 
X 5 3 0 0 

2001 
  

X 6 4 2 
2002 

   
X 5 1 

2003 
    

X 1 
2004 

     
X 
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Table A. 11: BSE1 photo-ID mark-recapture data from Forestell et al. (2011), provided by E. Martinez (pers. commn) 

  87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 

n  30 179 156 105 129 120 212 173 89 126 160 236 189 219 0 173 0 232 451 587 649 

87 X 9 2 3 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

88   X 40 10 9 8 8 6 3 2 3 4 1 4 0 1 0 1 1 3 2 

89     X 18 16 9 11 8 6 1 2 4 4 1 0 4 0 0 1 0 1 

90       X 10 10 10 4 2 0 1 2 3 2 0 0 0 0 1 1 2 

91         X 11 18 11 2 7 2 5 2 1 0 0 0 1 2 1 1 

92           X 20 15 1 4 2 7 1 4 0 2 0 0 1 2 0 

93             X 38 13 9 6 6 8 1 0 4 0 1 7 4 2 

94               X 16 20 8 9 8 3 0 4 0 1 6 3 0 

95                 X 7 2 6 1 4 0 1 0 3 6 1 1 

96                   X 17 11 5 6 0 2 0 1 5 4 0 

97                     X 25 5 7 0 8 0 1 2 5 0 

98                       X 21 13 0 10 0 2 8 7 5 

99                         X 18 0 4 0 2 8 5 9 

00                           X 0 11 0 5 15 11 3 

01                             X 0 0 0 0 0 0 

02                               X 0 9 17 12 9 

03                                 X 0 0 0 0 

04                                   X 17 16 11 

05                                     X 45 22 

06                                       X 57 

07                                         X 
 

Minimum number of haplotypes 

The minimum number of haplotypes for BSE1 is 42, with 5 of them being private to the South Pacific (Olavarría et 
al., 2006). 
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Oceania breeding stock 

Absolute abundance estimate 

The estimate in 2005 of 4,329 individuals (CV=0.12) arises from a sighting-resighting analysis of microsatellite 
genotypes collected from 1999 to 2005 across four survey areas in Oceania: New Caledonia (E2), Tonga (E3), the 
Cook Islands and French Polynesia (F2) (Constantine et al., in press). It is a doubled male-specific estimate assuming 
equal numbers of females in the region. 

Mark recapture data 

Table A. 12: Synoptic genotypic mark recapture data underlying male specific Oceania-wide abundance estimate (Constantine 
et al., in press). 

Year initial capture (males) 1999 2000 2001 2002 2003 2004 2005 
Total individuals captured 25 70 112 78 114 24 82 
1999 - 3 4 0 3 0 1 
2000  - 5 3 8 2 6 
2001   - 7 12 3 7 
2002    - 4 0 6 
2003     - 1 11 
2004      - 3 
2005       - 

 

 
Table A. 13: Oceania microsatellite genotypic mark-recapture data for males and females combined (Jackson et al., 2012). 

Sexes combined 1999 2000 2001 2002 2003 2004 
Total individual captures 52 114 183 130 216 79 

1999 X 3 5 3 2 1 

2000 
 

X 6 5 9 2 
2001 

  
X 9 18 6 

2002 
   

X 7 2 

2003 
    

X 2 
2004 

     
X 

 

 
Table A. 14: Oceania microsatellite genotypic mark-recapture data for males only (Jackson et al., 2012). 

Males 1999 2000 2001 2002 2003 2004 
Total individual captures 27 72 120 84 131 41 

1999 X 3 2 0 1 0 
2000 

 
X 5 3 6 1 

2001 
  

X 7 10 3 
2002 

   
X 4 0 

2003 
    

X 1 
2004 

     
X 

 

 
Table A. 15: Oceania microsatellite genotypic mark-recapture data for females only (Jackson et al., 2012). 

Females 1999 2000 2001 2002 2003 2004 
Total individual captures 25 42 63 46 85 38 

1999 X 0 3 3 1 1 
2000 

 
X 1 2 3 1 

2001 
  

X 2 8 3 
2002 

   
X 3 2 

2003 
    

X 1 
2004 

     
X 

 

 

Minimum number of haplotypes 

The minimum number of haplotypes for Oceania is 115 (Olavarría et al., 2007). 
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Feeding Ground Data 

Breeding Stock D 

Table A. 16: BSD Relative Abundance Index IV (Branch, 2011). Feeding ground estimates of abundance from IDCR-
SOWER CPI-CPIII surveys (south of 60oS) associated with breeding stock D correspond to sector 60˚E-120˚E of 
the Southern Oceans (Branch, 2011). Current nuclear area for feeding ground catch allocation for BSD 
corresponds to longitudinal sector 80oE-110oE and margin area corresponds to 60oE-130oE (IWC, 2010). 

Year Estimate CV Estimates for comparable areas CV 
1978 1,033 0.44 1,219 0.46 
1988 3,869 0.52 4,202 0.52 
1997 17,959 0.17 17,959 0.17 

 

 
Table A. 17: BSD Relative Abundance Index V (Matsuoka et al., 2011): JARPA surveys conducted during 1989/90-2004/05 

austral summer seasons (January and February) alternating survey areas between Area IV (70˚E-130˚E) and Area 
V (130˚E-170˚W), all south of 60˚S. Areas IV and V were divided into 2 sectors, western and eastern. Each sector 
was divided into northern (60˚S to 45 nm from ice-edge) and southern (from ice-edge to 45 nm away). Breeding 
Stock D corresponds to Area IV (Matsuoka et al., in press). 

Year Estimate CV 
1989 5325 0.302 
1991 5408 0.188 
1993 2747 0.153 
1995 8066 0.142 
1997 10657 0.166 
1999 16751 0.143 
2001 31134 0.123 
2003 27783 0.115 

 

 

Breeding Stock E1 

Table A. 18: BSE1 Relative Abundance Index III (Branch, 2011). Feeding ground estimates of abundance from IDCR-
SOWER CPI-CPIII surveys (south of 60oS) associated with Area V (130°E-170°W). 

Year Estimate CV Estimates for comparable areas CV 
1980 995  0.58 1,913 0.60 
1985 622  050 622 0.50 
1992 2,012  0.43 3,484 0.33 
2001 13,300  0.22 13,300 0.20 

 

 
Table A. 19: BSE1 Relative Abundance Index IV (Matsuoka et al., 2011): JARPA surveys conducted during 1989/90-2004/05 

austral summer seasons (January and February) alternating survey areas between Area IV (70˚E-130˚E) and Area 
V (130˚E-170˚W), all south of 60˚S. Areas IV and V were divided into 2 sectors, western and eastern. Each sector 
was divided into northern (60˚S to 45 nm from ice-edge) and southern (from ice-edge to 45 nm away). Breeding 
Stock E1 corresponds to Area V (Matsuoka et al., 2011). 

Year Estimate CV 
1989 5325 0.302 
1991 5408 0.188 
1993 2747 0.153 
1995 8066 0.142 
1997 10657 0.166 
1999 16751 0.143 
2001 31134 0.123 
2003 27783 0.115 
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Oceania breeding stock 

Table A. 20: Feeding ground estimates of abundance from IDCR-SOWER for breeding stock F correspond to sector 170oW-
110oW (Branch 2011). Current nuclear area associated with Breeding Stocks E2, E3 and F is 180˚-120˚W and 
margin is 160˚E-100˚W (IWC, 2010). 

Year Estimate CV Estimates for comparable areas CV 
1980 995  0.58 1,913 0.60 
1985 622  050 622 0.50 
1992 2,012  0.43 3,484 0.33 
2001 13,300  0.22 13,300 0.20 

 

Data informing interchange 

D and E1 

Table A. 21: Inter-regional recaptures between West and East Australia (Anderson and Brasseur, 2007). The first row gives 
the total number of East Australia animals that were sighted in 2002 and 2003, while the second row gives the 
total number of West Australia animals that were sighted in 2002 and 2003. Entries above the diagonal of X’s 
would reflect animals that were first seen in West Australia and then later re-seen in East Australia. Entries 
below the diagonal would reflect animals first seen in East Australia and later resighted in West Australia 

 EA 2002 EA 2003 
Total East Australia 216 131 
Total West Australia 89 144 
WA 2002 X 0 
WA 2003 0 X 

 

E1 and Oceania 

Table A. 22: Inter-regional recaptures between East Australia and Oceania, from microsatellite genotypic mark-recapture data 
for males and females combined (Jackson et al., 2012).  Note that entries above the diagonal of the matrix reflect 
animals that were first seen in Oceania, and later re-sighted in EA, while entries below the diagonal reflect 
animals that were first seen in EA and later re-sighted in Oceania. 

Sexes combined 1999 2000 2001 2002 2003 2004 
Total East Australia 4 72 187 222 154 126 

Total Oceania 52 114 183 130 216 79 
1999 X 1 0 1 0 0 
2000 0 X 0 0 0 0 
2001 0 0 X 2 0 2 
2002 0 0 0 X 0 0 
2003 0 1 0 1 X 0 
2004 0 0 0 0 0 X 

 

 
Table A. 23: Inter-regional recaptures between East Australia and Oceania, from microsatellite genotypic mark-recapture data 

for males and females combined (Jackson et al., 2012).   
Males 1999 2000 2001 2002 2003 2004 

Total East Australia 2 38 96 128 84 80 
Total Oceania 27 72 120 84 131 41 

1999 X 1 0 1 0 0 
2000 0 X 0 0 0 0 
2001 0 0 X 1 0 2 
2002 0 0 0 X 0 0 
2003 0 1 0 1 X 0 
2004 0 0 0 0 0 X 
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Table A. 24: Inter-regional recaptures between East Australia and Oceania, from microsatellite genotypic mark-recapture data 
for males and females combined (Jackson et al., 2012).   

Females 1999 2000 2001 2002 2003 2004 
Total East Australia 4 72 187 222 154 126 

Total Oceania 52 114 183 130 216 79 
1999 X 1 0 1 0 0 
2000 0 X 0 0 0 0 
2001 0 0 X 2 0 2 
2002 0 0 0 X 0 0 
2003 0 1 0 1 X 0 
2004 0 0 0 0 0 X 
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APPENDIX B – MODEL DIAGRAMS AND CATCH ALLOCATIONS 

This Appendix contains the model diagrams for the single-stock, two-stock and three-stock models for both the old 
and the new boundaries. 

Single-stock models 
Catches are allocated according to the boundaries given in Figure B. 1. Note that the traditional approach using core 
and marginal regions (where 100% of the core catches are allocated to the respective stocks, and catches from the 
marginal regions are shared equally between neighbouring stocks) has not been used here. 

Single-stock, old boundaries 

 

Single-stock, new boundaries 

 

Figure B. 1: Diagrammatic representations of the single-stock boundaries used for allocating the Antarctic catches, both for the 
original boundaries, and the new boundaries. 
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Two-stock model (D and E1) 
The two-stock model assumes that each year a proportion of D animals feed in the core E1 feeding area and 
conversely a proportion of E1 animals feed in the core D feeding area. Diagrammatic representations of the two-stock 
models for the old and new Antarctic boundaries are given in Figure B. 2. 

Since a mixture of D and E1 animals are assumed to occur on the Antarctic feeding grounds, the catches taken there 
need to be allocated in proportion to number of each stock present. In order to do this, the total numbers of animals 
found on each of the two feeding grounds need to be calculated: 

 1)1( E
yED

D
yDE

DCore
y NNN ββ +−=  (B.1) 

 11 )1( E
yED
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yDE
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y NNN ββ −+=  (B.2) 

where 

 DCore
yN  is the total number of whales in the core D Antarctic feeding area in year y (see Figure B. 2), 

 1ECore
yN  is the total number of whales in the core E1 Antarctic feeding area in year y (see Figure B. 2), 

 
DEβ  is the proportion of BSD whales that feed in the core E1 Antarctic feeding area each year, and 

 
EDβ  is the proportion of BSE1 whales that feed in the core D Antarctic feeding area each year. 

 

The total feeding ground catches allocated to the two stocks are then given by: 
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where 

 DF
yC ,  is the total Antarctic catch allocated to BSD, 

 1,EF
yC  is the total Antarctic catch allocated to BSE1, 

 DCore
yC  is the total Antarctic catch taken in the core D feeding region, and 

 1ECore
yC  is the total Antarctic catch taken in the core E1 feeding region. 

 
DCore

yC , WE
yC ,1 , EE

yC ,1 , OCore
yC  are calculated according to the boundaries given in see Figure B. 2. 

Priors for the mixing proportion parameters 

βDE and βDE are drawn from uniform priors on the interval [0,1]. A constraint needs to be placed on the values of βDE 
and βDE

 , as the uniform priors do not prevent a situation where nearly all of the BSD stock feeds in the E1 feeding 
area, and nearly all of the BSE1 stock feeds in the D feeding area, which is biologically implausible. The approach of 
Johnston and Butterworth (2005) was taken whereby the constraint is added that the proportion of BSE1 whales going 
to the E1 feeding area must be greater than the proportion of BSD whales, and vice versa. Mathematically this 
amounts to the constraint that βDE + βDE<1. The resulting prior distributions are shown in Figure B. 4. 

Three-stock model 
Similar to the two-stock model, the three-stock model allows for a proportion of animals from one stock to feed in a 
neighbouring feeding ground. In order to prevent a situation where all three stocks mix on a single feeding ground, 
four feeding areas are used in the model: a core D feeding area, an E1 west (E1,W) feeding area, an E1 east (E1,E) 
feeding area, and a core O feeding area. BSD and BSE1 mix on the core D and E1,W feeding areas, while BSE1 and 
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BSO mix on the E1,E and core O feeding areas. It is assumed that no D animals go further east than the E1,W feeding 
ground, and similarly no BSO animals go further west than the E1,E feeding ground. The diagrammatic 
representations of the three-stock model for the new and the old boundaries are given in Figure B. 2. The total 
numbers of whales in each of the four feeding areas are given by: 
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where 

 DCore
yN  is the total number of whales in the core D Antarctic feeding area in year y (see Figure B. 2), 

 WE
yN ,1  is the total number of whales in the E1 western Antarctic feeding area in year y (see Figure B. 2), 

 EE
yN ,1  is the total number of whales in the E1 eastern Antarctic feeding area in year y (see Figure B. 2), 

 OCore
yN  is the total number of whales in the core Oceania Antarctic feeding area in year y (Figure B. 2), 

 
DEβ  is the proportion of BSD whales that feed in the E1,W feeding area each year, 

 
EDβ  is the proportion of BSE1 whales that feed in the core D feeding area each year, 

 
EOβ  is the proportion of BSE1 whales that feed in the core O feeding area each year, 

 
OEβ  is the proportion of BSO whales that feed in the E1,E feeding area each year, 

 γ  is the proportion of BSE1 whales that feed in the E1,W feeding area each year, and 

 *γ  is the proportion of BSE1 whales that feed in the E1,E feeding area each year  

(note that 1* =+++ γγββ EOED ). 

 
The feeding-ground catch allocations to the three stocks are given as follows: 
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where 

 DF
yC ,  is the total Antarctic catch allocated to BSD, 

 1,EF
yC  is the total Antarctic catch allocated to BSE1, 

 OF
yC ,  is the total Antarctic catch allocated to BSO, 

 DCore
yC  is the total Antarctic catch taken in the core D feeding region, 

 WE
yC ,1  is the total Antarctic catch taken in the E1,W feeding region, 
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 EE
yC ,1  is the total Antarctic catch taken in the E1,E feeding region, and 

 OCore
yC  is the total Antarctic catch taken in the core O feeding region. 

 
DCore

yC , WE
yC ,1 , EE

yC ,1 , OCore
yC  are calculated according to the boundaries given in Figure B. 2. 

Priors for the interchange parameters 

As for the two-stock model, βDE and βDE are drawn from uniform priors on the interval [0,1] with the added constraint 
that βDE + βDE<1. Following similar logic, βEO and βOE are drawn from uniform priors on the interval [0,1] with the 
added constraint that βEO + βOE <1. In order to ensure that the BSE1 proportions sum to 1, (i.e. βDE+ βEO+γ+γ* =1), an 
approach was taken whereby βDE, βDE, βEO and βOE were drawn according to the above-mentioned constraints, and γ 
and γ* were drawn from a uniform prior on the interval [0,1]. Any samples where |1-βDE+ βEO+γ+γ* |>0.01 were 
discarded. The remaining samples were rescaled so that βDE+ βEO+γ+γ* =1. The resulting prior distributions are 
shown in Figure B. 5. 
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Figure B. 2: Diagrammatic representation of the two-stock and three-stock models, for both the old Antarctic boundaries and the new Antarctic boundaries. 
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Figure B. 3: Plots of the prior and posterior distributions for the growth rates estimated in the BSD, BSE1 and BSO single stock 

models. Posterior distributions have been shown here only for the analyses using the new boundaries. 
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Figure B. 4: Plots of the prior and posterior distributions for the BSD growth rate estimated in the BSD+BSE1 two-stock model, as 

well as the mixing proportion parameters. Results are shown here only for analyses using the new boundaries. The prior 
and posterior distributions for rE1 have not been included here, as they are virtually identical to those shown in Figure B. 
3. 
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Figure B. 5: Plots of the prior and posterior distributions for the mixing proportion parameters of the three-stock model. Results are 

shown here only for analyses using the new boundaries.  
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