Modelling selectivity as a random walk process

for the offshore trawl fleet for M. paradoxus

Rebecca A. Rademeyer and Doug S. Butterworth

May 2015

Introduction

In the current South African hake Reference Set of assessments, commercial fishing selectivity is assumed to be constant over fixed, pre-defined periods. In the case of the offshore trawl fleet, the three periods of fixed and changing selectivity (pre-1977, 1977-1984, and post-1992) have been selected to take account of the changes in the selectivity likely due to the phasing out of the (illegal) use of net liners to enhance catch rates. For the longline fleet, three periods have also been selected (pre-1999, 2000-2005, and post-2005). These have been chosen by examining the residual patterns of the fit to the catch-at-length data for that fleet.

In this analysis, the selectivity of M. paradoxus by the offshore trawl fleet (the largest component of the catches) is modelled instead as a random-walk process (similar to the approach in SAM) to allow it to vary more freely over time (see Appendix A for details). Catch-at-length data for the offshore trawl fleet are currently available for the period 1981-2012 (with a gap over 2000-2004) for the west coast, and over 1975-1996 for the south coast. The random walk process is therefore estimated only for those periods for which data are available; for the remainder of the assessment period, averages are used (see Table A.1). The reason why a random walk process cannot be readily estimated for both M. paradoxus and M. capensis is that the data available are not disaggregated by species. The exercise here is intended as a simple first cut to examine the potential of such a model for selectivity.

Results and Discussion

Three runs are compared:
a. "RS1": (Rademeyer and Butterworth, 2014 - "traditional" selectivity)
b. "sig=0.05": As RS1 but with offshore trawl selectivity for M. paradoxus modelled as a random walk process with $\sigma_{R W}$ fixed to 0.05 (see Appendix A).
c. "sig=0.1": As "sig=0.05" but with $\sigma_{R W}$ fixed to 0.1.

Table 1 give the difference in values of components of the negative log-likelihood for the two random walk cases compared to RS1. Unsurprisingly, the biggest improvement for the random walk cases is in the fit to the offshore CAL data. However, these changes have very little effect on the overall estimated trends in abundance (see Figure 1).

Selectivity does not vary much over time on the south coast. Changes are more noticeable on the west coast, where it is pleasing to note that the L parameter (the length at maximum selectivity) in particular behaves essentially as assumed on input for the RS over the liner-change period (see Figure 2).

Reference

Rademeyer RA and Butterworth DS. 2014. Specifications of the South African Hake 2014 Reference Case Assessment. MARAM/IWS/DEC14/Hake/P2.

Table 1: Difference in values of components of the negative log-likelihood for the two random walk cases compared to RS1.

		spp	sig=0.05	sig $=0.1$
CPUE	ICSEAF WC	combined	0.0	-0.4
	ICSEAF SC	combined	-0.3	-0.4
	GLM WC	paradoxus	1.8	1.1
	GLM SC	paradoxus	-2.1	-2.5
	GLM WC	capensis	0.0	-0.2
	GLM SC	capensis	-0.1	0.1
Survey	WC summer	paradoxus	-0.2	-0.1
	WC winter	paradoxus	0.0	0.0
	SC spring	paradoxus	-0.1	-0.2
	SC autumn	paradoxus	0.1	0.0
	WC summer	capensis	-0.9	-0.9
	WC winter	capensis	0.1	0.1
	SC spring	capensis	-0.1	-0.1
	SC autumn	capensis	-0.2	-0.2
Commercial sexaggregated CAL	WC offshore trawl	combined	-12.7	-17.1
	SC offshore trawl	combined	-3.4	-7.4
	SC inshore	capensis	0.0	0.1
	WC longline	combined	0.0	0.0
	SC longline	capensis	0.0	0.0
Commercial sexdisaggregated CAL	WC longline	paradoxus	-0.3	-0.5
	WC longline	capensis	0.0	0.0
	SC longline	paradoxus	0.0	0.0
	SC longline	capensis	0.3	0.4
	WC summer	paradoxus	-0.2	-0.3
	WC winter	paradoxus	-0.1	-0.2
Survey sexaggregated CAL	SC spring	paradoxus	0.2	0.3
	SC autumn	paradoxus	-0.4	-0.3
	WC summer	capensis	0.4	0.4
	WC winter	capensis	0.0	0.0
	SC spring	capensis	0.3	0.3
	SC autumn	capensis	0.0	0.0
	WC summer	paradoxus	-0.8	-0.8
Survey sexdisaggregated CAL	SC spring	paradoxus	-0.2	-0.3
	SC autumn	paradoxus	-1.4	-1.5
	WC summer	capensis	0.1	0.0
	SC spring	capensis	2.2	2.2
	SC autumn	capensis	-0.3	-0.3
Age-length keys			-0.2	0.7
Stock-recruit residuals		paradoxus	-0.9	-0.5
		capensis	0.1	0.1
Survey selectivity smoothing			-0.7	-1.0
Random walk residuals			6.9	6.5
Total			-12.9	-22.5

Figure 1: Spawning biomass trajectories (in absolute terms, top row, and relative to pre-exploitation level, bottom row) for the three cases for M. paradoxus (LHS) and M. capensis (RHS). The "sig" indicated within the plots refers to the selectivity random walk parameter $\sigma_{R W}$ (see equation A.2).

Figure 2: Time trajectories of the double normal selectivity parameter for the west coast (LHS) and south coast (RHS) offshore trawl fleet for M. paradoxus for the three cases. The resulting selectivities are shown for the years 1970, 1990 and 2010 for RS1 and sig=0.2 only. Note that the b parameter for RS1 on the south coast is outside the range plotted (i.e. corresponding to a flat selectivity at large lengths).

Appendix A: Changes made to the commercial selectivity

In Rademeyer and Butterworth (2014) three periods of fixed and changing selectivity have been assumed for the offshore trawl fleet to take account of the change in the selectivity at low ages over time in the commercial catches, likely due to the phasing out of the (illegal) use of net liners to enhance catch rates, with the times when the change started and ended specified on input. Here, the offshore trawl selectivity for M. paradoxus $S_{s f}$ is modelled instead as a random-walk process (and without any such input specifications on times of change):
$S_{s f l}=\exp \left(-\frac{\left(l-L_{y}\right)^{2}}{2 \alpha_{y}^{2}}\right) \quad$ for $l \leq L_{y}$
$S_{\text {sf }}=\exp \left(-\frac{\left(l-L_{y}\right)^{2}}{2 \beta_{y}^{2}}\right) \quad$ for $l>L_{y}$
where
$L_{y}=L_{y-1} e^{\varepsilon_{y}^{L}} \quad$ with $\quad \varepsilon_{y}^{L}$ from $N\left(0, \sigma_{L}^{2}\right)$
$\alpha_{y}=\alpha_{y-1} e^{\varepsilon_{y}^{\alpha}} \quad$ with $\quad \varepsilon_{y}^{\alpha}$ from $N\left(0, \sigma_{\alpha}^{2}\right)$
$\beta_{y}=\beta_{y-1} e^{\varepsilon_{y}^{\beta}} \quad$ with $\quad \varepsilon_{y}^{\beta}$ from $N\left(0, \sigma_{\beta}^{2}\right)$
The following parameters are therefore estimated for the west and south coasts separately:

$$
L_{y_{0}}, \alpha_{y_{0}}, \beta_{y_{0}} \text { and } \varepsilon_{y}^{L}, \varepsilon_{y}^{\alpha}, \varepsilon_{y}^{\beta} \text { from year } y_{0}+1 .
$$

Table A. 1 summarises the changes made for the offshore trawl fleet selectivity.

The contribution of the random walk parameters to the negative of the log-likelihood function is given by:
$-\ell n L^{R W}=\sum_{y=y 1}^{y 2} \frac{\left(\varepsilon_{y}^{L}\right)^{2}+\left(\varepsilon_{y}^{\alpha}\right)^{2}+\left(\varepsilon_{y}^{\beta}\right)^{2}}{2 \sigma_{R W}^{2}}$
$\sigma_{R W} \quad$ is fixed (here 0.05 or 0.1).

Table A.1: Details for the offshore trawl commercial selectivity-at-length, as well as indications of the nature of the data which are available. (The changes are highlighted.)

		Periods		riods of fixed selectivity Comments	Sele Periods	ctivity mod No of est. para.	odelled as random walk process Comments	Data available
$\begin{aligned} & 3 \\ & \text { 3 } \\ & 0 \\ & \text { S } \\ & \text { B } \\ & \text { Z } \\ & \text { B } \end{aligned}$		$\begin{array}{r} 1917- \\ 1976 \\ 1977- \\ 1984 \\ 1985- \\ 1992 \\ 1993- \\ 2013 \end{array}$	0 3 0 3	average between 77-84 and 93-2013 period double normal ($\sigma_{\text {Left, }} \sigma_{\text {Right }}$ and $I_{\max }$) linear change between 1984 and 1993 selectivity double logistic ($\sigma_{\text {Left }} \sigma_{\text {Right }}$ and $\left.I_{\max }\right)$	$\begin{gathered} 1917- \\ 1980 \\ 1981- \\ 2012 \\ \\ 2013 \end{gathered}$	$3+31 * 3$	average 1981-1985 double normal with random walk average 2008-2012	species combined, 1981-1999, 2005-2012
		$\begin{array}{r} 1917- \\ 1976 \\ 1977- \\ 1984 \\ 1985- \\ 1992 \\ 1993- \\ 2013 \end{array}$	0 3 0 3 0	double normal ($\sigma_{\text {Left, }} \sigma_{\text {Right }}$ and $\left.I_{\text {max }}\right)$ double normal ($\sigma_{\text {Left, }} \sigma_{\text {Right }}$ and $\left.I_{\text {max }}\right)$ linear change between 1984 and 1993 selectivity double normal ($\sigma_{\text {Left, }} \sigma_{\text {Right }}$ and $\left.I_{\text {max }}\right)$ female downscaling factor (av. of SC spring and autumn surveys's factors)	$\begin{gathered} 1917- \\ 1974 \\ 1975- \\ 1996 \\ 1997- \\ 2013 \end{gathered}$	$3+21 * 3$ 0 0	average 1975-1979 double normal with random walk average 1992-1996 female downscaling factor (av. of SC spring and autumn surveys's factors)	species combined, 1975-1996
$\begin{aligned} & 3 \\ & 3 \\ & \text { 3 } \end{aligned}$		$\begin{gathered} \hline 1917- \\ 1976 \\ 1977- \\ 1984 \\ 1985- \\ 1992 \\ \\ 1993- \\ 2013 \end{gathered}$	0 3 0 3	average between 77-84 and 93-2013 period as $93-13$ but $\sigma_{\text {Left }}$ same difference as for paradoxus between 77-84 and 93-13 linear change between 1984 and 1993 selectivity Based on inshore selectivity: $I_{\max }=I_{\max }$ (inshore) $+5, \sigma_{\text {Left }}=\sigma_{\text {Left }}$ (inshore) and $\sigma_{\text {Right }}=3^{*} \sigma_{\text {Right }}$ (inshore)			average between 77-84 and 93-2013 period as $93-13$ but $\sigma_{\text {Left }}$ same difference as for paradoxus between 1984 and 1993 linear change between 1984 and 1993 selectivity Based on inshore selectivity: $I_{\max }=I_{\max }($ inshore $)+5, \sigma_{\text {Left }}=\sigma_{\text {Lett }}$ (inshore) and $\sigma_{\text {Righ }}=3^{*} \sigma_{\text {Right }}$ (inshore)	species combined, 1981-1999, 2005-2012
$\underset{z}{z}$	$\begin{gathered} \text { \|Meג7 } \\ \text { alousffo łseos yłnos } \end{gathered}$	1917- 1976 1977- 1984 1985- 1992 1993- 2013	0 3 0 3	average between 77-84 and 93-2013 period as $93-13$ but $\sigma_{\text {Left }}$ same difference as for paradoxus btw 77-84 and $93-13$ periods linear change between 1984 and 1993 selectivity Based on inshore selectivity: $I_{\max }=I_{\max }(\text { inshore })+5, \sigma_{\text {Left }}=\sigma_{\text {Left }}(\text { inshore })$		0 0 0 0	average between 77-84 and 93-2013 period as 93-13 but $\sigma_{\text {Left }}$ same difference as for paradoxus between 1984 and 1993 linear change between 1984 and 1993 selectivity Based on inshore selectivity: $\left.I_{\max }=I_{\max }(\text { inshore })+5, \sigma_{\text {Left }}=\sigma_{\text {Left }} \text { (inshore }\right)$	species combined, 1975-1996

