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Introduction 10 

The South African boat-based, commercial linefish sector refers to a multi-species, multi-area 11 

cluster of low to medium technology boat-based inshore fisheries in which more than 200 fish 12 

species are caught manually by hand-lines or rods and reels. Within this cluster one can identify 13 

individual fisheries on the basis of fishing strategy, area and target species, but other fisheries 14 

such as the demersal trawl fishery also impact on the resource given the considerable overlap in 15 

terms of catch compositions (Attwood et al., 2011). The species that account for the largest 16 

landings by the linefishery can be roughly grouped into pelagic shoaling species such as 17 

yellowtail (Seriola lalandi) and snoek (Thyrsites atun), demersal species such as silver kob 18 

(Argyrosomus inodorous) and geelbek (Atractoscion aequidens) and reef-associated seabreams 19 

including carpenter (Argyrozona argyrozona), slinger (Chrysoblephus puniceus) and hottentot 20 

(Pachymetopon blochii).  21 

 22 
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Monitoring of the linefishery started at the turn of the 20th century with JDF Gilchrist, the 23 

Government Marine biologist of the Cape of Good Hope, and the first concerns about 24 

overfishing  of some linefish species were voiced already in the 1940s (Griffiths 2000). 25 

Mandatory catch and effort returns from the boat-based commercial linefishery have been 26 

captured since 1985 and stored in the National Marine Linefish System (NMLS), a database 27 

hosted by the South African Department of Agriculture, Forestry and Fisheries (DAFF). In 1985, 28 

the linefish sector was also formally recognized for the first time and national legislation was 29 

introduced to limit effort and fishing mortality. Despite these first regulations, spawner-biomass 30 

per-recruit analyses and comparisons with historical catch data in the 1990s indicated alarming 31 

states for many linefish stocks (Buxton, 1992; Punt, 1993; Punt et al., 1996; Griffiths, 1997; 32 

Griffiths, 2000), which subsequently lead to the declaration of a state of emergency in this 33 

fishery in 2000, accompanied by a significant reduction in commercial boat effort (nominally ~ 34 

70%). The forced reduction of effort was reflected in the allocation of medium-term and long-35 

term commercial fishing rights and in the formulation of the linefish management protocol 36 

(Griffiths 1997a), which intended to guide the management of stocks according to biological 37 

reference points based on spawner biomass per-recruit models.  38 

 39 

Several linefish species have been assessed once by spawner-biomass per- recruit analysis. This 40 

first wave of assessments was to estimate the relative depletion levels of the stocks, many of 41 

which had been exploited for a century by the fishery (Griffiths, 2000). However, there has been 42 

no attempt to assess and quantify the impact of the ensuing reduction of commercial effort in 43 

2000, which was designed to rebuild stocks. To date, more than a decade later, there is therefore 44 

a pressing need for a new round of linefish assessments.  Per-recruit analysis  might not be 45 



MARAM IWS/NOV12/LF/P1 

3 

 

appropriate to quantify a potential recovery of stocks as it relies on the steady-state assumptions 46 

of constant fishing mortality and constant recruitment, which will almost certainly be violated in 47 

the case of stock rebuilding (Butterworth et al., 1989). Despite catch and effort data being 48 

captured since 1985, linefish stock assessment in South Africa has previously been hampered by 49 

the inability to standardize the catch-per-unit-effort (CPUE) time series for the effect of 50 

multispecies targeting.  Recent developments of standardization approaches for multispecies 51 

CPUE now permit constructing more reliable time series of abundance indices with potentially 52 

useful information for stock assessments (Winker et al., 2012; Winker et al., accepted). 53 

 54 

The objective of this study was to assess stock status of carpenter and silver kob twelve years 55 

after the emergency in the linefishery. To achieve this, we developed Bayesian state-space 56 

biomass dynamic (surplus production) models, which were fitted to time series of landings data 57 

and standardized abundance indices. We chose biomass dynamics models because there was 58 

insufficient age-disaggregated data available to employ more complex age-structured models. 59 

The fairly low data requirements of biomass dynamics models make them an attractive option in 60 

situations where reliable information about the size- and age-structure of the stock is difficult to 61 

obtain (Hilborn and Walters, 1992). State-space models are regarded as a powerful tool for 62 

modelling time-varying abundance indices because they simultaneously account for both process 63 

error and observation error (Meyer and Millar, 1999; de Valpine, 2002; Buckland et al., 2004). 64 

The process error can account for model structure uncertainty as well as natural variability of 65 

stock biomass due to stochasticity in recruitment, natural mortality, growth and maturation, 66 

while the observation error determines the uncertainty in the observed abundance index due to 67 

reporting error and unaccounted variations in catchability (Meyer and Millar, 1999; Buckland et 68 
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al., 2004; Ono et al., 2012). A Bayesian framework was chosen to reduce uncertainties about 69 

estimates of stock size, fishing mortality and fisheries reference points through the use of 70 

informed priors (Punt and Hilborn, 1997; Hilborn and Liermann, 1998; McAllister et al., 2001), 71 

which incorporate published literature on historical stock levels and population demographics.  72 

The main output of the assessment models are biplots that simultaneously portray the trajectory 73 

of the exploited stock against target population size and target harvest rate at Maximum 74 

Sustainable Yield (MSY) for the period from 1987 to 2012.  75 

 76 

Materials and methods 77 

Data  78 

Catch and effort data for the boat-based South African handline fishery were extracted from the 79 

National Marine Linefish System (NMLS) and total landing reported by the inshore trawl fleet 80 

were obtained from the Department of Agriculture, Forestry and Fishery (DAFF). The time 81 

series considered for the analysis was 1987 – 2011. The catches from both fisheries were 82 

aggregated by region assuming that the populations of both species can be split into a southern 83 

stock and a south-eastern stock (Fig 1). The magnitude of the carpenter and silver kob catches 84 

that are discarded by the inshore trawl fleet has been estimated based on based on on-board 85 

observer data collected during the period from 2003 to 2006 (Attwood et al., 2011). To account 86 

for discard mortality in the assessment models, the reported trawl landings for carpenter and 87 

silver kob were multiplied by the estimated pre-discard to post-discard catch ratios of 2.61 and 88 

1.49, respectively (Attwood et al., 2011).  89 

 90 
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Standardized CPUE time series (1987-2011) were based on commercial hand-line catch and 91 

effort data. The raw data comprised mandatory daily catch returns (kg) per species per boat day 92 

as estimated by the skipper, vessel number, crew number, hours on sea, the date and catch 93 

location. The reported catch location, initially provided as a shore position and a distance 94 

offshore, is referenced to the midpoints of 5 × 5 minute latitude and longitude grid-cells. The 95 

CPUE data were standardized by following the standardization approach described for carpenter 96 

and silver kob in Winker et al. (in press).  This approach involves the application of a 97 

Generalized Additive Model framework that was designed to adjust for the effect of different 98 

fishing tactics by making use of the information contained in the catch composition. Additional 99 

predictor variables included in the model are year, month, latitude (lat) and longitude (long), 100 

crew size (crew) and mean hours spent at sea per record (hours).  For this analysis, the CPUE 101 

records for the southern stock were subset into two regions, south-west and south-central (SC), to 102 

reflect the geographical division of the fishery and to account for geographical differences in 103 

species composition and targeting (Fig.1). 104 

 105 

State-space biomass dynamics model  106 

Three principle classes of non-equilibrium estimation frameworks have been widely used for 107 

biomass dynamics models: (1) observation error model, (2) process error models and (3) total 108 

error models (Polachek et al., 1993; Punt, 2003).   A generic formulation for biomass dynamics 109 

models can be written as: 110 

( ) ( )ttttt CBgBB ηexp)|(1 −+=+ θ         111 

( )jttt qBI ,expε=           112 

 113 
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where is Bt is the biomass at the start of year t, )|( θtBg  denotes the surplus production as 114 

function of  Bt  and a given vector of parameters θθθθ, tC is the catch in year t (assumed be known), 115 

It is the relative index of abundance in year t, q the catchability coefficient scaling the modelled 116 

biomass to the abundance index It, and tη is the process error in year t and it ,ε  is the observation 117 

error for year t in abundance index, with  ),0(~ 2ση Nt and ),0(~ 2
, iit N τε , respectively. 118 

 119 

Each of the three estimation frameworks represents a special case of the generalized model 120 

defined by equations (1) and (2), with τ2 = 0 in the case of process error models, σ2 = 0 in the 121 

case of observation error models, and a predefined relationship between σ2 and τ2 (i.e. σ2/ τ2 = 122 

C) in the case of total error models (Punt, 2003). By contrast, state-space models do not require 123 

assumptions about a fixed relationship between σ2 and τ2, as they are based on likelihood 124 

calculations that can integrate over unknown process errors (Meyer and Millar, 1999; Millar and 125 

Meyer, 2000; de Valpine, 2002; Punt, 2003). Most recent advances in random effects modelling 126 

now allow for treating the process errors as a vector of unobserved random effects { }nηη ...1=η  127 

that can be integrated out when estimating the process error variance σ2 (Fournier et al., 2012; 128 

Ono et al., 2012; Pedersen et al., 2012; Thorson et al., 2012). This procedure is implemented in 129 

the open source software ADMB-RE (Fournier et al., 2012; http://admb-project.org), which 130 

provides a computationally efficient way to implement state-space models (Pedersen et al., 131 

2012).    132 

 133 

Here, we develop a numerically integrated Bayesian state-space model according to Meyer and 134 

Millar (1999), by using the mixed-effect modelling framework in ADMB-RE (Fournier et al., 135 
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2012; Pedersen et al., 2012). The production function is assumed to follow the Schaefer (1954) 136 

or logistic form: 137 

( ) 






 −=
K

B
rBBg t

tt 1 , 138 

where r is the intrinsic rate of population increase and K is the biomass at the carrying capacity. 139 

 As the exploitation of many linefish species commenced already in the mid-1800s, it would be 140 

unrealistic to assume that the biomass at the start of the time series in 1987 approximates the 141 

pristine biomass prior to exploitation K. The initial biomass in the first year of the time series 142 

was therefore scaled by introducing the model parameter ϕ , which is defined by the ratio of the 143 

biomass in the first year of the CPUE time series to K, such that: 144 

 145 

)exp( 11 ηϕKB =            146 
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1

11 tt
t

ttt C
K

B
rBBB η







 −






 −+= −
−

−−   t = 2, 3,…, n    147 

As suggested by Meyer and Millar (1999), we re-parameterized the biomass dynamics model by 148 

expressing Bt as proportion of K (Pt =Bt / K) to improve the efficiency of the estimation 149 

algorithm. The stochastic form of the process equation is then: 150 

)exp( 11 ηϕ=P            151 

( )( ) )exp(/1 1111 tttttt KCPrPPP η−−−− −−+=   t = 2, 3,…, n     152 

 and the observation equation is given by: 153 

)exp( ttt qKPI τ=      t = 1, 2,…, n.    154 

 155 

 156 
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Management quantities  157 

A number of management related quantities were derived to assess the status of the carpenter and 158 

silver kob stocks. These were (1) Maximum Sustainable Yield (MSY), (2) the harvest rate at 159 

MSY (HMSY), (3) the biomass at MSY (BMSY), (4) the depletion as a ratio as biomass in 2012 to 160 

K (B2012/K), (5) the relative change in biomass since the forced effort reduction in 2000 161 

(B2012/B2000) and (6) the ratio of harvest rate in 2012 to the harvest rate that produces MSY at 162 

BMSY (H2012/HMSY),  where MSY = rK/4, Bmsy = K/2 and HMSY = r/2. Stock status trajectories over 163 

the period of the time series (1987 – 2011) are presented in the form of biplot graphs that plot the 164 

ratio Bt/BMSY on the y-axis against the ratio Ht /HMSY on the x-axis, where Ht is the predicted 165 

harvest rate in year t that is calculated as Ht = Ct / Bt .        166 

 167 

Bayesian state-space estimation framework 168 

A fully Bayesian biomass dynamics model projected over n years requires a joint probability 169 

distribution over all unobservable hyper-parameters { }22 ,,,,, τσϕqrK=θ  and the n process 170 

errors relating to the unobserved random effects vector )...{ 1 tηη=η (Pedersen et al., 2012), 171 

together with all observable data in the form of the relative abundance indices }...{ 1 nII=I  172 

(Meyer and Millar, 1999). Accordingly, the joint posterior distribution of the Bayesian state-173 

space biomass dynamics model can be conceptually divided into three components: (1) a joint 174 

prior distribution, (2) a distribution for the process equation and (3) a distribution for the 175 

observation equation.  The joint prior distribution on the vector of parameters θ is given by:  176 

)()()()()()()( 22 τσϕ pppqprpKpp =θ        177 
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Assuming multiplicative log-normal errors, the probability distribution for the process equation 178 

is of the form: 179 

( ) ( ) ∏∏
==

−
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and the probability distribution for observation equation, given the unobserved random effects 181 

for year t, tη  , is: 182 
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where 2
,itξ is observed variance for year t and abundance index iI , which was calculated from the 184 

standard errors of  year effects that were predicted from the CPUE standardization model. In this 185 

approach, the estimated parameter 2τ corresponds to the additional temporally-invariant variance 186 

in the relative abundance index (Butterworth et al., 1993). According to Bayes’ theorem, it 187 

follows that joint posterior distribution over all unobservable parameters, given the data and 188 

unknown random effects, can be formulated as: 189 

∏∏
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t
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ητσϕσϕ

τσϕθ ηI,
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 191 

 Formulation of prior distributions 192 

The formulation of informative prior distributions permits the integration of existent information 193 

from literature into the Bayesian estimation framework. In this way, one can, for example, ensure 194 

that all possible parameter solutions given the data will be within plausible biological limits of 195 

the stock under assessment (McAllister et al., 2001). However, care must be taken not to 196 
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overstate the precision of priors for uncertain model parameters (Punt and Hilborn, 1997; 197 

McAllister et al., 2001).  This typically pertains to parameters of absolute biomass (e.g. K), 198 

catchability or variance estimates, for which it may not be feasible to objectively specify 199 

informative prior distributions given the available information (Punt and Hilborn, 1997; 200 

McAllister et al., 2001; Ono et al., 2012).  201 

 202 

In this study, we assumed non-informative prior distributions for all model parameters except the 203 

intrinsic rate of population increase r and the ratio B1987 to K, ϕ  (Table 2). The prior 204 

distributions for 2σ , 2τ  and K were chosen to be represented by a reasonably uninformative 205 

inverse-gamma distribution: 206 








 −
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x
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kk λλ
exp

)(
)(

)1(

,  207 

 with the scaling parameters λ and k  set to 0.001 (Chaloupka and Balazs, 2007; Zhou et al., 208 

2009; Brodziak and Ishimura, 2012).  The choice of this distribution implies that the parameters 209 

are approximately uniform on ln(x) (Jeffrey’s prior) and has, for example, the property that lower 210 

weight is assigned to very higher values of K which assists to prevent implausibly large posterior 211 

values of K (McAllister and Kirkwood, 1998).  The catchability parameters q are considered to 212 

be uniformly distributed (Booth and Quinn II, 2006). As is common practice, a lognormal was 213 

chosen to determine informative prior distributions p(ϕ ) and p(r) (Meyer and Millar, 1999; 214 

McAllister et al., 2001; Brodziak and Ishimura, 2012), such that: 215 
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where µ denotes prior mean of ϕ  or r and lnσ  is the lognormal standard deviation associated 217 

with ln(µ). 218 

 219 

For the base-case scenarios (Model 1), the mean priors for ϕ  were set to ϕµ = 0.15 and ϕµ = 0.10 220 

for carpenter and silver kob stocks, respectively. These values are based on the analysis of 221 

historical catch and effort records (1897-1906 and 1927-31) in comparison to catch rates for the 222 

period 1986-1998 and are generally in agreement with estimated spawner-biomass per-recruit 223 

depletion levels (SPR / SPR0)  for both species prior to 2000 (Griffiths, 1997; Brouwer and 224 

Griffiths, 2006). To account for the uncertainty around these estimates, we chose a fairly low 225 

precision associated with ϕµ  by setting lnσ  to achieve a coefficients of variation (CV) of 40%, 226 

so that )1CVln( 22
ln +=σ ).   227 

 228 

In order to specify a prior distribution for r, we adapted the Leslie matrix method by McAllister 229 

et al. (2001).  Based on this approach, demographic information can be used to construct an age-230 

structured Leslie matrix A of the form (Caswell, 2001): 231 























=

−1max
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max321

0000

0000

0000

0000

t

t

S

S

S

⋱

⋯ φφφφ

A      (14), 232 

where tφ is the average number of recruits expected to be produced by an adult female at age t 233 

and St is the fraction of survivors at age t.  Using matrix algebra, the value of r can be 234 

approximated from the relationship λ = exp(r), where λ is the dominant eigenvalue of the 235 
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transition matrix (Quinn and Deriso, 1999; Caswell, 2001). Here, we used the basic matrix 236 

analysis tool provided in the Excel add-in ‘Poptools’ (www.poptools.org) to derive λ from the 237 

Leslie matrix, as described in detail by Mollet and Cailliet (2002). The life history parameters 238 

used to construct the prior distributions for r were sourced from previous studies on carpenter 239 

(Brouwer and Griffiths, 2006) and silver kob (Griffiths, 1997) and are summarized in Table 2. 240 

 241 

Age-dependent survival was estimated as St = exp(-M), where M is the instantaneous rate of 242 

natural mortality.  The average number of recruits expected to be produced by an adult female at 243 

age t is expressed as: 244 

ttt Wψαφ =            (15), 245 

where α denotes the slope of the origin of the spawner-recruitment relationship (i.e. the ratio of 246 

recruits to spawner biomass at very low abundance) (Hilborn and Walters, 1992; Myers et al., 247 

1999; Forrest et al., 2012), tW is the weight at age t, tψ  is the fraction of females that are mature 248 

at age t. Weight-at-age was estimated as function of the weight to length conversion parameters a 249 

and b and length-at-age, Lt, such that Wt = aLt
b. The corresponding Lt for carpenter was 250 

calculated based on the Bertalanffy growth function parameters given in Brouwer and Griffiths 251 

(2006) (Table 1):  252 

)))(exp(1( 0ttkLLt −−−= ∞ , 253 

while Lt for silver kob growth was calculated using the growth parameters of the Richards 254 

function (Schnute, 1981) provided by Griffiths (1997) (Table 1): 255 

p

t p

ttk
LL

−

∞ 






 −−+= *))(exp(
1   . 256 
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The fraction of mature females at age t was calculated as a function of: 257 

)/)(exp(1

1

50 tm
t tt δ

ψ
−−+

= , 258 

where 50mt  is the estimated age-at-50%-maturity (Table 1) and δt was set to 0.1 to resemble close 259 

to knife-edge maturation. For the calculation of α  first consider the Beverton and Holt spawner-260 

recruitment relationship (S-R) of the form: 261 

S

S
R

β
α
+

=
1

, 262 

 where R is the number of recruits, S is the spawner biomass and β  is the scaling parameter 263 

(Hilborn and Walters, 1992).  In contrast to alternative formulations of the Beverton and Holt S-264 

R function, the parameter α can be directly interpreted as the slope in the origin of the S-R curve 265 

(Hilborn and Walters, 1992). We re-parameterizedα  as function of unfished spawner-biomass 266 

per recruit SPR0 and the steepness parameter h of the spawner-recruitment relationship (Myers et 267 

al., 1999; Forrest et al., 2012), such that: 268 

1
0)1(

4 −

−
= SPR

h

hα ,  269 

where h is defined as the ratio of recruitment at a spawner biomass that is reduced to 20% of 270 

pristine levels to pristine recruitment (Mace and Doonan, 1988), and 0SPR  is a function of: 271 

)exp(1

)exp(
)exp( max

maxmax

1max

1
0 M

Mt
WMWSPR tt

t

t
tt −−

−+







−= ∑

−

=

ψψ , 272 

where the maximum observed age, tmax, is treated as a plus group. In contrast to the population-273 

specific parameters α and β , the estimate of the steepness parameter h of the S-R relationship 274 

has the advantage that it is directly comparable between populations (Hilborn and Liermann, 275 
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1998). This property permits to derive empirical Bayesian priors for h from meta-analyses of 276 

multiple stocks (Myers et al., 1999; Dorn, 2002; Forrest et al., 2012).  Myers et al. (1999), for 277 

example, provided estimates of steepness h for 57 fish species, which they derived from a meta-278 

analysis of spawner-recruitment data for 249 populations. Because there was no specific 279 

information on h for silver kob and carpenter available, we adapted a rather generic mean 280 

steepness value of h = 0.7 for both species, which represents the overall average steepness value 281 

derived for fairly long-lived, highly fecund fishes of medium to large body size (Myers et al., 282 

1999; Rose et al., 2001). Many commercially exploited species, including Sparidae and 283 

Scianidae, typically fall into this ecological group of fishes (Winemiller, 1992; Myers et al., 284 

2002), which corresponds to the general domain of periodic life history strategists (Winemiller 285 

and Rose, 1992). 286 

 287 

Finally, a Monte-Carlo simulation procedure was used to generate prior distributions for r from 288 

the Leslie-Matrix (McAllister et al., 2001). For this purpose, random variables of M and h were 289 

drawn from a log-normal distribution, with )2/exp( 2
lnσεµ −= MM , )2/exp( 2

lnσεµ −= hh  and 290 

),0(~ 2
lnσε N . The variance parameters were set to achieve CV’s of 20% for both M and h.  For 291 

each species, we generated a vector 1000 random r deviates. The parameters rµ and 2
lnσ ,  292 

defining the prior distribution for r, were derived by fitting a lognormal distribution to the 293 

bootstrap vector. The resultant prior parameter estimates were rµ = 0.18 and 2
lnσ  = 0.272 for 294 

carpenter and rµ = 0.21 and 2
lnσ  = 0.262 for silver kob (Table 1). 295 

  296 

 297 
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Posterior distributions and uncertainty 298 

Joint posterior probability distributions of model parameters, projections and management 299 

quantities were estimated using the Metropolis-Hastings Markov Chain Monte-Carlo (MCMC) 300 

algorithm implemented for random effects models in ADMB-RE (Fournier et al., 2012). 301 

Convergence of the MCMC chains was diagnosed using the coda package (Plummer et al., 2006) 302 

implemented in the statistical software R (R Development Core Team, 2011), adopting minimal 303 

thresholds of  p = 0.05 for Geweke’s diagnostic (Geweke, 1992) and the two-stage Heidelberger-304 

Welch  stationary test (Heidelberger and Welch, 1992).   305 

 306 

The mixing in the MCMC chains was generally fairly slow and often insufficient. The latter 307 

appeared to be caused by non-stationary behaviour of the process error variance σ2. We therefore 308 

introduced a double-logistic function as a penalty to constrain the ratio VR =τ2/ σ2 within the 309 

boundaries by: 310 

)/)(exp(1)(/)(exp(1(

1

2211 RR RxRx
p

δδ −−+−−+
=  , 311 

where 2/ˆ
1 RVR = , RVR ˆ21 = , RR V̂02.01 =δ , RR V̂04.01 =δ  and RV̂  denotes the ratio 312 

unconstrained maximum likelihood estimates  22 ˆ/ˆˆ στ=RV .  The corresponding negative log-313 

likelihood profile, -ln(p), is illustrated for the example of RV̂ = 4 (Fig. 2). This penalty increased 314 

the stability of the MCMC chains substantially and convergence could be achieved for all base-315 

case models after running the MCMC simulation for 2 million cycles, discarding the first 200000 316 

iterations as burn-in phase and then thinning the chain by saving every 200th iteration to reduce 317 

autocorrelation.        318 
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 319 

The 2.5th and 97.5th percentiles of the posterior distributions are used to represent 95% Bayesian 320 

credibility intervals for all parameters, projections and management quantities. The estimated 321 

95% credibility intervals are analogous to 95% confidence intervals and can interpreted in the 322 

sense that there is a 95% probability that the lower and upper credibility intervals includes the 323 

true value given the prior information and the data.    324 

 325 

Results and discussion 326 

In 2000, a state of emergency was declared in the South African boat-based handline fishery on 327 

the basis of substantially decreased catch rates of important species and alarming results from 328 

spawner biomass per-recruit analyses. The emergency was accompanied by a significant 329 

reduction in commercial line-boat effort to allow stock recovery. Declines in linefishery catches 330 

of carpenter and silver kob were not uniform and generally commenced prior to the forced effort 331 

reduction in 2000 and typically reached a minimum during the period 2001 - 2004 (Fig. 3). 332 

Inshore trawl catches, by contrast, increased during this period, to the extent that they frequently 333 

exceeded the linefishery catches during the first five years after the emergency (Fig. 3). 334 

 335 

The model fits appeared to be adequate in that the models were able to predict the observed 336 

increase in the standardized CPUE indices. The clearest and most consistent trends were evident 337 

for southern-eastern stocks of carpenter (Fig. 4 A) and silver kob (Fig. 4 B), which was 338 

supported by fairly narrow 95% credibility intervals. The fit to south coast silver kob data 339 

showed moderate departures from the standardized CPUE indices in most recent years (Fig. 4 C).   340 
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The posterior medians for the intrinsic rate of population rate r were fairly similar for both 341 

species but were found to be consistently lower than their corresponding priors means (Tables 1 342 

and 3, Fig. 5). This could indicate a lower stock productivity than predicted by the species’ life 343 

history traits or perhaps points towards sources of additional fishing mortality that were not 344 

accounted for by the available data. On intra-specific comparisons, the posterior medians for r 345 

were slightly higher for the south-eastern coast stocks.   346 

 347 

The models consistently predicted an improvement in biomass compared to levels around 2000, 348 

as the drastic management intervention in the linefishery forced harvest rates below those at 349 

Maximum Sustainable Yield (Figs. 6 and 7). The two silver kob stocks remain of concern as 350 

inshore trawl catches have increased since 2000, slowing down potential recoveries and possibly 351 

resulting in growth overfishing due to earlier selectivity. 352 

 353 
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Table 1 Summary of prior probability density functions used to fit Bayesian state-space models 474 

to data from carpenter and silver kob stocks   475 

Prior type Carpenter Silver Kob 

Non-informative K ~ inversegamma(0.001,0.001) K ~ inversegamma(0.001,0.001) 

Informative r ~Lognormal(-1.746,0.266) r ~Lognormal(-1.551,0.258) 

Informative ϕ ~ Lognormal(-1.897,0.385) ϕ ~ Lognormal(-2.659,0.385) 

Non-informative ln(q) ~ Uniform(-10,2) ln(q) ~ Uniform(-10,2) 

Non-informative σ2 ~ inversegamma(0.001,0.001) σ2 ~ inversegamma(0.001,0.001) 

Non-informative τ2 ~ inversegamma(0.001,0.001) τ2 ~ inversegamma(0.001,0.001) 

   
 476 

  477 
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Table 2 Summary of life history parameters used to derive informative priors for the intrinsic 478 

rate of population increase r. 479 

Species Parameter Value Source 

Carpenter L∞ 619 mm FL Brouwer & Griffith (2005) 

  k 0.06 year-1 Brouwer & Griffith (2005) 

  t0 -4.5 years Brouwer & Griffith (2005) 

  a 0.00004 g Brouwer & Griffith (2005) 

  b 2.924 g mm-1 Brouwer & Griffith (2005) 

  M 0.10 year-1 Brouwer & Griffith (2005) 

  tm50 4 years Brouwer & Griffith (2005) 

  δt 0.10 year-1 assumed ~ knife-edge   

  tmax 30 years Brouwer & Griffith (2005) 

Silver Kob L∞ 1142 mm FL Griffiths (1997) 

  k 0.65 year-1 Griffiths (1997) 

  t* -4.5 years Griffiths (1997) 

  p 0.26   Griffiths (1997) 

  a 0.000006 g Griffiths (1997) 

  b 3.07 g mm-1 Griffiths (1997) 

  M 0.15 year-1 Griffiths (1997) 

  tm50 2.4 years Griffiths (1997) 

  δt 0.10 year-1 assumed ~ knife-edge  

  tmax 30 years Griffiths (1997) 

 480 

 481 

 482 

 483 

 484 

  485 
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Table 3. Posterior means and 95% Bayesian credibility intervals for the southern and south-486 
eastern carpenter and silver kob stocks. 487 

           Carpenter southern stock Silver kob southern stock 

Parameters Median 
95% Credibility 

Interval 
Median 95% Credibility Interval 

K  23335.0 10722.1 - 52505.5 107285.0 45752.2 - 239456.0 

r  0.149 0.117 - 0.210 0.097 0.072 - 0.128 

ϕ  0.182 0.085 - 0.351 0.087 0.042 - 0.200 

qSW 0.015 0.012 - 0.018 0.006 0.004 - 0.009 

qSC 0.020 0.016 - 0.025 0.010 0.007 - 0.014 

σ2 0.00097 0.00039 - 0.00254 0.0010 0.0005 - 0.0021 

τ2
SW 0.00556 0.00197 - 0.01353 0.0120 0.0059 - 0.0241 

τ2
SC 0.00562 0.00204 - 0.01396 0.0146 0.0086 - 0.0272 

MSY 863.2 554.4 - 1644.0 2571.0 1285.1 - 5130.3 

HMSY 0.075 0.059 - 0.105 0.048 0.036 - 0.064 

BMSY 11667.5 5361.0 - 26252.7 53642.5 22876.1 - 119728.0 

B2012/K 0.361 0.173 - 0.644 0.1269 0.0605 - 0.2895 

B2012/B2000 2.328 2.02 - 2.69 1.56 1.41 - 1.76 

                   Carpenter south-eastern stock  Silver kob southern-eastern stock 

Parameters Median 
95% Credibility 

Interval 
Median 95% Credibility Interval 

K  23588.8 11922.5 - 50836.0 30543.5 14802.9 - 66970.5 
r  0.164 0.121 - 0.211 0.141 0.109 - 0.178 
ϕ  0.120 0.12 - 0.059 0.075 0.075 - 0.036 

qSE 0.023 0.013 - 0.031 0.024 0.016 - 0.032 

σ2 0.00208 0.00090 - 0.00481 0.00092 0.00039 - 0.0023 

τ2
SE 0.01109 0.00592 - 0.02221 0.00522 0.00244 - 0.0112 

MSY 959.8 567.7 - 567.7 1067.1 577.5 - 2123.1 

HMSY 0.082 0.060 - 0.105 0.070 0.055 - 0.089 

BMSY 11794.4 5961.25 - 25418.0 15271.8 7401.5 - 33485.2 

B2012/K 0.394 0.207 - 0.667 0.178 0.085 - 0.349 

B2012/B2000 3.440 2.80 - 4.23 2.44 2.10 - 2.86 

 488 

 489 
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490 
Fig.1 Map showing the regional split for southern and south-eastern stocks of carpenter and 491 

silver kob.  492 

 493 

 494 

 495 

Fig. 2 illustrating a negative log-likelihood profile for used as penalty to stabilize the MCMC 496 

runs. The example is based on  22 ˆ/ˆˆ στ=RV  = 4 (see text).     497 
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 498 

Fig. 3 Cumulative area plots illustrating total catches (tons) by sector for (a) carpenter south, (b) 499 

carpenter east, (c) silver kob south and (d) silver kob east 500 
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 502 

Fig. 4 Standardized CPUE indices and model fits for (a) carpenter south, (b) carpenter south-503 

east, (c) silver kob south and (d) silver kob south-east. Note that the CPUE from the south-504 

central CPUE was scaled to the CPUE from the south-west coast by applying the estimated 505 

catchability coefficients. 506 
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 514 

 515 

Fig. 5 Informative prior and joint posterior distributions for carpenter south (a) – (c), carpenter 516 

south-east (d) – (f), silver kob south (g) – (i) and silver kob south-east (j) – (l). 517 
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 519 

 520 

 521 

Fig. 6 Ratio harvest rate to HMSY for (a) carpenter south, (b) carpenter south-east, (c) silver kob 522 

south and (d) silver kob south-east.  The gray shaded areas illustrate the 95% credibility 523 

intervals. 524 
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 525 

Fig. 7 Biplots illustrating the predicted trajectories of the ratios B/BMSY and H/HMSY for  (a) 526 

carpenter south, (b) carpenter east, (c) silver kob south and (d) silver kob east. The shaded areas 527 

show kernel densities representing the 50%, 75% and 95% credibility intervals.  528 

 529 

  530 

 531 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

H HMSY

B
B

M
S

Y

(a) 1987
2000
2011
50% C.I.
75% C.I.
95% C.I.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

H HMSY
B

B
M

S
Y

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

H HMSY

B
B

M
S

Y

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

H HMSY

B
B

M
S

Y
(d)


