Further projections using the environmental movement scenario

C.L. de Moor ${ }^{*}$
Correspondence email: carryn.demoor@uct.ac.za

Figure 1 shows the median and 90% probability intervals of future projections of movement under the hypothesis that future movement "switches" between increasing or decreasing towards an equilibrium proportion, based on whether a favourable or unfavourable environment exists on the south coast (MoveE) from 2012 to 2032 assuming no future catch, together with the model estimated median and 90% probability intervals of historic annual movement.

The equations used are:

$$
\text { move }_{y}=\frac{\exp \left\{\ln \left(\frac{\text { move }_{y}^{*}}{1-\text { move }_{y}^{*}}\right)+\xi_{y}\right\}}{1+\exp \left\{\ln \left(\frac{\text { move }_{y}^{*}}{1-\text { move }_{y}^{*}}\right)+\xi_{y}\right\}} \text {, where } \xi_{y} \sim N\left(0,0.57^{2}\right)
$$

$$
\operatorname{move}_{y}^{*}=0.9051 \text { move }_{y-1}^{*}+1.000 \times(1-0.9051) \quad \text { during an increasing regime }
$$

$$
\operatorname{move}_{y}^{*}=0.9051 \text { move }_{y-1}^{*}+0.076 \times(1-0.9051) \quad \text { during a decreasing regime }
$$

Figure 2 extends Figure 1 for a further 100 years. The median of the last 10 peaks/troughs of the projection are $0.58,0.49,0.58,0.47,0.56,0.49,0.57,0.50,0.57,0.50$.

Figures 3 and 4 show the impact of longer periods between "switches" (10-12 and 15-17 rather than the baseline of 5-7 years).

Figure 1. The median and 90% probability interval of model estimated proportions of "west" stock recruits moving to the "south" stock (red) and the median and 90% probability interval of future projected proportions moving under a no catch scenario, assuming MoveE (black). The horizontal dashed lines indicate the equilibrium values of 1.000 and 0.076 .

[^0]

Figure 2. A repeat of Figure 1, but extended for a further 100 years.

Figure 3. A repeat of Figure 2, but where the period between the environmental "switches" is $10-12$ years instead of 5-7 years.

Figure 4. A repeat of Figure 2, but where the period between the environmental "switches" is 15-17 years instead of 5-7 years.

[^0]: * MARAM (Marine Resource Assessment and Management Group), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701, South Africa.

