Specifications of the South African Hake 2014
 Reference Case Assessment

Rebecca A. Rademeyer and Doug S. Butterworth

November 2014

INTRODUCTION

This paper gives specifications of the 2014 South African hake Reference Case assessment. The data used as input to the Reference Case are listed in Appendix A, while the methodology is detailed in Appendix B. Figure 1 shows the distribution of the two hake species, and the boundary between west and south coasts adopted for analysis purposes.

Figure 1: Management units and species distribution for southern African hake (adapted from Payne 1989).

REFERENCES

Glazer JP. 2013. Updated CPUE and catch analyses for OMP 2014. Unpublished report. FISHERIES/2013/SEP/SWGDEM/49.

Fairweather T. 2012. Research Survey Hake Data - 2012 Update. Unpublished report, DAFF/2012/OCT/SWG-DEM/20.
Fairweather T. 2013. Calculating offshore commercial catch at length (CAL) for hake from samples collected at processing facilities - final. Unpublished report. FISHERIES/2013/OCT/SWG-DEM/56.

Payne AIL. 1989. Cape hakes. In Oceans of Life off Southern Africa. Edited by Payne AIL and Crawford RJM. Vlaeberg Publishers, Cape Town. 136-147.

Punt AE and Kennedy RB. 1997. Population modeling of Tasmanian rock lobster, Jasus edwardsii, resources. Mar. Freshw. Res. 48, 967-980.

Singh L, Melo Y and Glazer J. 2011. Merluccius capensis and M. paradoxus length-at-50\% maturity based on histological analyses of gonads from surveys. Unpublished report. FISHERIES/2011/JUL/SWG-DEM/33.
Singh L. 2013. Length weight relationship of both hake species. Unpublished report. FISHERIES/2013/OCT/SWGDEM/58.

Smith ADM, Cox S, Parma A and AE Punt. 2013. International Review Panel report for the 2013 International Fisheries Stock Assessment Workshop. 2-6 December 2013, University of Cape Town, South Africa. MARAM IWS(DEC13/General/4.

Somhlaba S and Leslie RW. 2014. Catch-at-length information and proportions of females for Merluccius paradoxus and M. capensis off the South African coast from 2000 to 2010. Unpublished report. FISHERIES/2014/AUG/SWG-DEM/38.

Appendix A - Data Tables

Table App.A.1a: Species-disaggregated catches (in thousand tons) by fleet of South African hake from the south and west coasts for the period 1917-1977. The Reference Case assessment assumes 1958 as the centre year of the shift from primarily M. capensis to primarily M. paradoxus in the offshore trawl catches.

	M. paradoxus Offshore WC	M. capensis Offshore
	WC	

	M. paradoxus Offshore		M. capensis		
			Offshore		Inshore
	WC	SC	WC	SC	SC
1948	0.059	-	58.741	-	-
1949	0.113	-	57.287	-	-
1950	0.275	-	71.725	-	-
1951	0.662	-	88.838	-	-
1952	1.268	-	87.532	-	-
1953	2.558	-	90.942	-	-
1954	5.438	-	99.962	-	-
1955	10.924	-	104.476	-	-
1956	19.581	-	98.619	-	-
1957	34.052	-	92.348	-	-
1958	51.895	-	78.805	-	-
1959	76.609	-	69.391	-	-
1960	100.490	-	59.410	-	1.000
1961	104.009	-	44.691	-	1.308
1962	109.596	-	38.004	-	1.615
1963	129.966	-	39.534	-	1.923
1964	126.567	-	35.733	-	2.231
1965	159.704	-	43.296	-	2.538
1966	154.109	-	40.891	-	2.846
1967	139.973	7.086	36.727	7.100	3.154
1968	113.890	13.958	29.710	13.950	3.462
1969	131.023	18.982	34.077	18.948	3.769
1970	113.124	11.876	29.376	11.847	4.077
1971	160.384	15.078	41.616	15.037	4.385
1972	193.694	23.382	50.239	23.314	4.692
1973	125.292	36.232	32.490	36.124	5.000
1974	97.674	45.496	25.326	45.357	10.056
1975	71.165	33.783	18.452	33.680	6.372
1976	114.268	26.005	29.626	25.925	5.740
1977	81.260	18.515	21.068	18.457	3.500

Table App.A.1b: Species-disaggregated catches (in thousand tons) by fleet of South African hake from the south and west coasts for the period 1978-present. The recent offshore trawl catches are from Glazer (2013), the recent inshore and handline catches are from Rob Cooper (pers. comm.) and the new longline catches from Sobahle Somhlaba (pers. comm.). For 2013, the catches are taken as the 2013 TAC with the same proportion by species and fleet as in 2012.

	M. paradoxus				M. capensis					
	Offshore		Longline		Offshore		Inshore SC	Longline		Handline SC
	WC	SC	WC	SC	WC	SC		WC	SC	
1978	107.701	4.937	-	-	19.812	2.648	4.931	-	-	-
1979	101.890	3.575	-	-	31.633	3.345	6.093	-	-	-
1980	105.483	3.676	-	-	28.045	2.784	9.121	-	-	-
1981	95.330	1.767	-	-	25.601	3.719	9.400	-	-	-
1982	88.933	5.057	-	-	24.417	6.300	8.089	-	-	-
1983	74.173	7.034	0.126	-	20.260	5.482	7.672	0.104	-	-
1984	86.045	5.718	0.200	0.005	25.210	5.217	9.035	0.166	0.011	-
1985	98.283	12.694	0.638	0.091	26.788	7.322	9.203	0.529	0.201	0.065
1986	107.907	11.539	0.753	0.094	25.898	4.427	8.724	0.625	0.208	0.084
1987	96.162	10.536	1.952	0.110	21.363	5.148	8.607	1.619	0.243	0.096
1988	83.606	8.664	2.833	0.103	22.976	5.852	8.417	2.350	0.228	0.071
1989	85.298	9.039	0.158	0.010	21.961	9.873	10.038	0.132	0.022	0.137
1990	84.969	13.622	0.211	-	18.668	9.169	10.012	0.175	-	0.348
1991	89.371	15.955	-	0.932	17.079	6.119	8.206	-	2.068	1.270
1992	86.777	22.368	-	0.466	16.510	4.094	9.252	-	1.034	1.099
1993	105.114	12.472	-	-	12.951	1.789	8.870	-	-	0.278
1994	106.287	8.588	0.882	0.194	17.580	2.464	9.569	0.732	0.432	0.449
1995	102.877	5.395	0.523	0.202	18.020	1.755	10.630	0.434	0.448	0.756
1996	110.460	11.080	1.308	0.568	18.715	2.209	11.062	1.086	1.260	1.515
1997	103.035	13.651	1.410	0.582	14.119	2.185	8.834	1.170	1.290	1.404
1998	113.083	11.703	0.505	0.457	14.570	2.450	8.283	0.419	1.014	1.738
1999	89.147	13.435	1.532	1.288	14.614	1.912	8.595	1.272	2.856	2.749
2000	97.417	9.920	2.706	3.105	20.285	3.610	10.906	2.000	1.977	5.500
2001	101.990	11.016	2.045	0.370	15.606	5.141	11.836	1.750	1.347	7.300
2002	91.720	15.445	4.469	1.585	13.211	3.140	9.581	2.391	2.546	3.500
2003	95.143	21.107	3.305	1.252	10.233	3.926	9.883	2.526	3.078	3.000
2004	86.916	30.746	2.855	1.196	11.315	4.024	10.004	2.297	2.731	1.600
2005	87.540	25.051	3.091	0.472	7.727	4.195	7.881	2.773	3.270	0.700
2006	83.840	22.133	3.241	0.485	9.657	2.494	5.524	2.520	3.227	0.400
2007	96.332	15.825	2.512	3.021	12.537	1.420	6.350	2.522	2.522	0.400
2008	88.290	14.940	2.255	0.809	11.085	2.567	5.496	1.937	1.893	0.231
2009	69.716	13.269	2.410	1.069	10.783	2.431	5.639	2.828	2.520	0.265
2010	70.156	17.863	2.045	0.370	9.738	1.649	5.472	1.750	1.347	0.275
2011	76.744	20.447	3.261	0.905	15.505	1.543	6.013	2.705	2.009	0.185
2012	82.531	19.204	3.582	0.573	11.978	1.751	3.223	2.972	1.272	0.008
2013	101.350	23.583	4.399	0.704	14.709	2.151	3.958	3.650	1.562	0.010

Table App.A.1c: Male proportion of the longline catches for M. paradoxus and M. capensis (Somhlaba, pers. comm.). For years for which data are not available, the average over the whole period from 1999 to 2011 is used.

	M. paradoxus		M. capensis	
	WC	SC	WC	SC
1999	0.152	0.460	0.187	0.293
2000	0.357	0.460	0.098	0.293
2001	0.054	0.526	0.134	0.382
2002	0.263	0.460	0.139	0.365
2003	0.227	0.460	0.223	0.317
2004	0.125	0.460	0.108	0.266
2005	0.058	0.460	0.149	0.165
2006	0.046	0.288	0.103	0.272
2007	0.037	0.460	0.344	0.293
2008	0.223	0.346	0.293	0.279
2009	0.224	0.615	0.337	0.212
2010	0.054	0.526	0.134	0.382
2011	0.152	0.460	0.187	0.293

Table App.A.2: South and west coast historic (ICSEAF 1989) and GLM standardized CPUE data (Glazer, 2013) for M. paradoxus and M. capensis.

Year	GLM CPUE ($\mathrm{kg} \mathrm{min}^{-1}$) Species combined		Year	GLM CPUE (kg min ${ }^{-1}$)			
	Species combined			M. paradoxus		M. capensis	
	West Coast	South Coast		West Coast	South Coast	West Coast	South Coast
1955	17.31	-	1978	4.20	1.09	0.74	1.68
1956	15.64	-	1979	4.16	1.08	1.21	1.84
1957	16.47	-	1980	3.86	1.59	1.08	2.07
1958	16.26	-	1981	3.85	1.03	1.11	2.01
1959	16.26	-	1982	3.79	1.31	0.95	1.99
1960	17.31	-	1983	4.08	1.43	1.28	2.46
1961	12.09	-	1984	4.17	1.55	1.35	2.84
1962	14.18	-	1985	4.88	2.24	1.49	3.45
1963	13.97	-	1986	4.25	2.18	1.22	2.87
1964	14.60	-	1987	3.50	1.94	1.07	2.63
1965	10.84	-	1988	3.46	1.60	0.96	2.79
1966	10.63	-	1989	3.74	1.57	1.03	3.00
1967	10.01	-	1990	4.02	2.34	0.87	3.59
1968	10.01	-	1991	4.37	2.32	1.08	3.24
1969	8.62	1.28	1992	3.81	2.72	1.32	2.96
1970	7.23	1.22	1993	3.89	2.25	1.24	2.13
1971	7.09	1.14	1994	4.16	1.81	1.58	2.88
1972	4.90	0.64	1995	3.63	1.39	1.63	2.71
1973	4.97	0.56	1996	3.94	1.99	1.89	2.50
1974	4.65	0.54	1997	3.52	2.28	1.64	1.82
1975	4.66	0.37	1998	3.93	1.93	1.87	2.09
1976	5.35	0.40	1999	3.19	2.20	1.72	2.00
1977	4.84	0.42	2000	2.84	1.67	1.61	2.22
			2001	2.30	1.65	1.10	1.64
			2002	2.23	1.41	1.06	1.84
			2003	2.64	1.93	0.90	2.07
			2004	2.20	1.52	0.81	1.65
			2005	2.19	1.34	0.58	1.48
			2006	2.38	1.46	0.62	1.03
			2007	2.92	1.53	0.60	0.98
			2008	3.23	1.65	0.81	1.56
			2009	3.23	2.05	1.42	2.89
			2010	3.54	2.25	1.22	2.22
			2011	3.30	2.62	1.47	2.79
			2012	2.92	2.17	1.24	1.62

Table App.A.3: Survey abundance estimates and associated standard errors in thousand tons for M. paradoxus for the depth range $0-500 \mathrm{~m}$ for the South Coast and for the West Coast. Values in bold are for the surveys conducted by the Africana with the new gear (Fairweather, 2012).

Year	West coast				South coast			
	Summer		Winter		Spring (Sept)		Autumn (Apr/May)	
	Biomass	(s.e.)	Biomass	(s.e.)	Biomass	(s.e.)	Biomass	(s.e.)
1985	166.294	(35.299)	264.839	(52.949)	-	-	-	-
1986	196.111	(36.358)	172.477	(24.122)	13.758	(3.554)	-	-
1987	284.805	(53.101)	195.482	(44.415)	21.554	(4.605)	-	-
1988	158.758	(27.383)	233.041	(64.003)	-	-	30.316	(11.104)
1989	-	-	468.780	(124.830)	-	-	-	-
1990	282.174	(78.945)	226.862	(46.007)	-	-	-	-
1991	327.020	(82.180)	-	-	-	-	26.638	(10.460)
1992	226.687	(32.990)	-	-	-	-	24.304	(15.195)
1993	334.151	(50.234)	-	-	-	-	198.849	(98.452)
1994	330.270	(58.319)	-	-	-	-	111.469	(34.627)
1995	324.554	(80.357)	-	-	-	-	55.068	(22.380)
1996	430.908	(80.604)	-	-	-	-	85.546	(25.484)
1997	569.957	(108.200)	-	-	-	-	135.192	(51.031)
1998	-	-	-	-	-	-	-	-
1999	569.364	(114.536)	-	-	-	-	321.478	(113.557)
2000	-	-	-	-	-	-	-	-
2001	-	-	-	-	19.929	(9.956)	-	-
2002	267.487	(35.068)	-	-	-	-	-	-
2003	411.177	(69.431)	-	-	88.442	(36.051)	108.857	(37.528)
2004	259.527	(56.021)	-	-	63.900	(17.894)	48.898	(20.343)
2005	286.416	(39.849)	-	-	-	-	26.605	(7.952)
2006	315.310	(49.490)	-	-	72.415	(15.500)	34.799	(8.325)
2007	397.049	(71.564)	-	-	52.287	(19.231)	129.646	(60.661)
2008	246.542	(51.973)	-	-	24.816	(8.775)	39.505	(11.408)
2009	330.235	(28.526)	-	-	-	-	102.834	(28.670)
2010	589.533	(85.686)	-	-	-	-	169.560	(67.650)
2011	347.082	(92.540)	-	-	-	-	24.105	(7.089)
2012	377.515	(50.690)	-	-	-	-	-	-
2013	-	-	-	-	-	-	-	-

Table App.A.4: Survey abundance estimates and associated standard errors in thousand tons for M. capensis for the depth range $0-500 \mathrm{~m}$ for the South Coast and for the West Coast (Fairweather, 2012). Values in bold are for the surveys conducted by the Africana with the new gear.

Year	West coast				South coast			
	Summer		Winter		Spring (Sept)		Autumn (Apr/May)	
	Biomass	(s.e.)	Biomass	(s.e.)	Biomass	(s.e.)	Biomass	(s.e.)
1985	125.028	(22.719)	181.487	(27.476)	-	-	-	-
1986	117.810	(23.636)	119.587	(18.489)	121.197	(16.625)	-	-
1987	75.693	(10.241)	87.391	(11.198)	159.088	(17.233)	-	-
1988	66.725	(10.765)	47.120	(9.568)	-	-	165.939	(21.871)
1989	-	-	323.833	(67.295)	-	-	-	-
1990	455.798	(135.237)	157.800	(23.561)	-	-	-	-
1991	77.357	(14.995)	-	-	-	-	274.298	(44.395)
1992	95.407	(11.744)	-	-	-	-	138.085	(15.357)
1993	92.598	(14.589)	-	-	-	-	158.340	(13.733)
1994	121.257	(35.951)	-	-	-	-	160.555	(23.701)
1995	199.142	(26.812)	-	-	-	-	236.025	(31.840)
1996	83.337	(9.285)	-	-	-	-	244.410	(25.107)
1997	257.293	(46.056)	-	-	-	-	183.087	(18.906)
1998	-	-	-	-	-	-	-	-
1999	196.992	(32.059)	-	-	-	-	191.203	(14.952)
2000	-	-	-	-	-	-	-	-
2001	-	-	-	-	133.793	(20.858)	-	-
2002	106.253	(15.813)	-	-	-	-	-	-
2003	75.960	(13.314)	-	-	82.928	(9.010)	128.450	(20.062)
2004	205.939	(33.216)	-	-	106.119	(15.596)	99.902	(12.027)
2005	70.983	(13.845)	-	-	-	-	76.932	(5.965)
2006	88.420	(22.851)	-	-	99.867	(9.803)	130.900	(14.816)
2007	82.040	(11.491)	-	-	74.615	(7.383)	70.940	(5.615)
2008	50.877	(5.355)	-	-	94.232	(11.456)	108.195	(9.978)
2009	175.289	(39.920)	-	-	-	-	124.004	(11.808)
2010	163.545	(34.444)	-	-	-	-	184.960	(37.720)
2011	89.392	(23.218)	-	-	-	-	117.222	(11.857)
2012	92.588	(11.926)	-	-	-	-	-	-
2013	-	-	-	-	-	-	-	-

Table App.A.5: Commercial length frequencies available for use in the Reference Case. *The longline data starred are available disaggregated by sex (Somhlaba and Leslie, 2014).

	Offshore trawl Species combined		Inshore trawl M. capensis SC	Longline				
			Spp combined M. paradoxus wC		M. capensis	M. paradoxus	M. capensis S	
	wc	SC						
1975		\checkmark	-	-	-	-		
1976	-	\checkmark	-	-	-	-	-	
1977	-	\checkmark	-	-	-	-	-	
1978	-	\checkmark	-	-	-	-	-	
1979	-	\checkmark	-	-	-	-	-	
1980	-	\checkmark	-	-	-	-	-	
1981	\checkmark	\checkmark	\checkmark	-	-	-		
1982	\checkmark	\checkmark	\checkmark	-	-	-		
1983	\checkmark	\checkmark	\checkmark	-			-	-
1984	\checkmark	\checkmark	\checkmark	-	-	-		
1985	\checkmark	\checkmark	\checkmark	-	-	-		
1986	\checkmark	\checkmark	\checkmark	-	-	-	-	
1987	\checkmark	\checkmark	\checkmark	-	-	-	-	
1988	\checkmark	\checkmark	\checkmark	-	-	-	-	
1989	\checkmark	\checkmark	\checkmark	-	-	-	-	
1990	\checkmark	\checkmark	\checkmark	-	-	-	-	
1991	\checkmark	\checkmark	\checkmark	-	-	-		
1992	\checkmark	\checkmark	\checkmark	-	-	-		
1993	\checkmark	\checkmark	\checkmark	-	-	-	-	-
1994	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark
1995	\checkmark	\checkmark	\checkmark	\checkmark	-	-		\checkmark
1996	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark
1997	\checkmark		-	\checkmark	-	-	-	\checkmark
1998	\checkmark		\checkmark	-	-	-	-	
1999	\checkmark		\checkmark	-	-	-	-	
2000	-		\checkmark	-	$\checkmark *$	$\checkmark *$	-	$\checkmark *$
2001			\checkmark	-	$\checkmark *$	$\checkmark *$	$\checkmark *$	$\checkmark *$
2002			-	-	$\checkmark *$	$\checkmark *$		$\checkmark *$
2003		-	-	-	$\checkmark *$	$\checkmark *$	-	$\checkmark *$
2004	-	-	-	-	$\checkmark *$	$\checkmark *$	-	$\checkmark *$
2005	\checkmark		-	-	$\checkmark *$	$\checkmark *$		$\checkmark *$
2006	\checkmark		-	-	$\checkmark *$	$\checkmark *$	$\checkmark *$	$\checkmark *$
2007	\checkmark		\checkmark	-	$\checkmark *$	$\checkmark *$	-	
2008	\checkmark		\checkmark	-	$\checkmark *$	$\checkmark *$	$\checkmark *$	$\checkmark *$
2009	\checkmark		\checkmark	-	$\checkmark *$	$\checkmark *$	$\checkmark *$	$\checkmark *$
2010	\checkmark		\checkmark	-	$\checkmark *$	$\checkmark *$	$\checkmark *$	$\checkmark *$
2011	\checkmark		\checkmark	-	-	-	-	
2012	\checkmark	-	\checkmark	-	-	-	-	$-$

Table App.A.6: Survey length frequencies available for use in the Reference Case. *The data starred are available disaggregated by sex.

West coast				South coast	
Year	Summer	Winter	Spring	Autumn	
1985	\checkmark	\checkmark	-	-	
1986	\checkmark	\checkmark	\checkmark	-	
1987	\checkmark	\checkmark	\checkmark	-	
1988	\checkmark	\checkmark	-	\checkmark	
1989	-	\checkmark	-	-	
1990	\checkmark	\checkmark	-	-	
1991	\checkmark	-	-	-	
1992	\checkmark	-	-	\checkmark	
1993	$\checkmark *$	-	-	$\checkmark *$	
1994	$\checkmark *$	-	-	$\checkmark *$	
1995	$\checkmark *$	-	-	$\checkmark *$	
1996	$\checkmark *$	-	-	$\checkmark *$	
1997	$\checkmark *$	-	-	-	
1998	-	-	\checkmark	-	
1999	$\checkmark *$	-	-	-	
2000	-	-	-	-	
2001	-	-	-	\checkmark	
2002	\checkmark	-	-	\checkmark	
2003	\checkmark	-	-	\checkmark	
2004	\checkmark	-	-	$\checkmark *$	
2005	\checkmark	-	-	$\checkmark *$	
2006	$\checkmark *$	-	-	$\checkmark *$	
2007	$\checkmark *$	-	-	$\checkmark *$	
2008	$\checkmark *$	-	-	$\checkmark *$	
2009	$\checkmark *$	-	-	$\checkmark *$	
2010	$\checkmark *$	-	-	-	
2011	$\checkmark *$	-	-	-	
2012	$\checkmark *$	-	-	-	
2013	-	-	-		

Table App.A.7: Species- and sex-disaggregated age at length data available for use in the Reference Case by reader, with sample sizes shown.

	Reader	UR	AD	M. paradoxus Number of otilith's readings						TA	KB	Data actually used	
				LB	KG	JP	AP	DJ	PM				Reader
West coast summer survey	1990	351										351	UR
	1991	349										349	UR
	1992				310	310	44					309	KG
	1993				311	313		49				311	KG
	1994				290	290		4				290	KG
	1995				303						303	303	KG
	1996	292										292	UR
	1997	333		334									
	1999	268	307	299								283	LB
	2004			503									
	2005			353								333	LB
	2006		465	468									
	2007		557	554								533	LB
	2008		410	409								410	LB
West coast winter survey	1988	471										470	UR
	1990	303										303	UR
South coast spring survey	1994	10										10	UR
	2004												
	2006		489	243								243	LB
	2007		116									116	AD
	2008		149									148	AD
South coast autumn survey	1991	109										109	UR
	1992				40	40	5					40	KG
	1993				95	95		23				95	KG
	1994				69	95		27				69	KG
	1995	95										95	UR
	1996	60										60	UR
	1997	85										84	UR
	1999		139	139					140	140	140	134	LB
	2004												
	2005		194	193								185	LB
	2006		444	358								352	LB
	2007		215	214								208	LB
	2008		137									132	AD
Offshore commercial	1992				521	521	46					521	KG
	1993				646	645		75				645	KG
	1994				330	330		38				330	KG
Longline commercial	1994				314	314		9				314	KG

Table App.A.8: Female maturity-at-length ogive (equation B.50) parameter estimates (from Singh et al. 2011).

	$l_{50}(\mathrm{~cm})$	$\Delta(\mathrm{cm})$
M. paradoxus	41.53	2.98
M. capensis	53.83	10.14

Table App.A.9: Length-weight relationship estimates (from Singh 2013).

	α $\left(\mathrm{gm} / \mathrm{cm}^{\beta}\right)$	β
M. paradoxus:		
Males	0.007750	2.977
Females	0.005700	3.071
M. capensis:		
Males	0.006750	3.044
Females	0.005950	3.075

APPENDIX B: South African hake 2014 Reference Case assessment model specifications

The model used is a gender-disaggregated Statistical Catch-at-Age (SCAA), which is fitted directly to age-length keys (ALKs) and length frequencies. The model also assesses the two species as two independent stocks and is fitted to species-disaggregated data as well as species-combined data. A distinction is made between the west and the south coasts (see Figure 1), with hake movement surrogated using the "areas-as-fleets" approach. "Fleet" below therefore refer to a combination of gear type (offshore trawl, inshore trawl, longline and handline) and area (west and south coasts). The general specifications and equations of the overall model are set out below, together with some key choices in the implementation of the methodology. Details of the contributions to the log-likelihood function from the different data considered are also given. Quasi-Newton minimisation is used to minimise the total negative loglikelihood function (implemented using AD Model Builder ${ }^{\text {TM }}$, Otter Research, Ltd. (Fournier et al. 2011)).

App.B. 1 Population Dynamics

App.B1.1 Numbers-at-age

The resource dynamics of the two populations (M. capensis and M. paradoxus) of the South African hake are modelled by the following set of equations.

Note: for ease of reading, the 'species' subscript s has been omitted below where equations are identical for the two species.

$$
\begin{align*}
N_{y+1,0}^{g}= & R_{y+1}^{g} \tag{B.1}\\
N_{y+1, a+1}^{g} & =\left(N_{y a}^{g} e^{-M_{a}^{g} / 2}-\sum_{f} C_{f y a}^{g}\right) e^{-M_{a}^{g} / 2} \quad \text { for } 0 \leq a \leq m-2 \tag{B.2}\\
N_{y+1, m}^{g}= & \left(N_{y, m-1}^{g} e^{-M_{m-1}^{g} / 2}-\sum_{f} C_{f, y, m-1}^{g}\right) e^{-M_{m-1}^{g} / 2} \tag{B.3}\\
& +\left(N_{y m}^{g} e^{-M_{m}^{g} / 2}-\sum_{f} C_{f y m}^{g}\right) e^{-M_{m}^{g} / 2}
\end{align*}
$$

where
$N_{y a}^{g} \quad$ is the number of fish of gender g and age a at the start of year y^{1};
$R_{y}^{g} \quad$ is the recruitment (number of 0 -year-old fish) of fish of gender g at the start of year y;
$m \quad$ is the maximum age considered (taken to be a plus-group);
M_{a}^{g} denotes the natural mortality rate on fish of gender g and age a; and
$C_{f y a}^{g} \quad$ is the number of hake of gender g and age a caught in year y by fleet f.

App.B.1.2 Recruitment

The number of recruits (i.e. new zero-year old fish) at the start of year y is assumed to be related to the corresponding female spawning stock size (i.e., the biomass of mature female fish). The underlying assumptions are that female spawning output can limit subsequent recruitment, but that there are always sufficient males to provide adequate fertilisation. The recruitment and corresponding female spawning stock size are related by means of the BevertonHolt (Beverton and Holt 1957) or a modified (generalised) form of the Ricker stock-recruitment relationship. These

[^0]forms are parameterized in terms of the "steepness" of the stock-recruitment relationship, h, the pre-exploitation equilibrium female spawning biomass, $K^{\circ, s p}$, and the pre-exploitation recruitment, R_{0} and assuming a $50: 50$ sex-split at recruitment:
\[

$$
\begin{equation*}
R_{y}^{g}=\frac{4 h R_{0} B_{y}^{\circ, s p}}{K^{\circ, s p}(1-h)+(5 h-1) B_{y}^{\rho, s p}} e^{\left(\varsigma_{y}-\sigma_{R}^{2} / 2\right)} \tag{B.4a}
\end{equation*}
$$

\]

for the Beverton-Holt stock-recruitment relationship and

$$
\begin{equation*}
R_{y}^{g}=\alpha B_{y}^{\rho, s p} \exp \left(-\beta\left(B_{y}^{\circ}, s p\right)^{\gamma}\right) e^{\left(\varsigma_{y}-\sigma_{R}^{2} / 2\right)} \tag{B.4b}
\end{equation*}
$$

with
$\alpha=R_{0} \exp \left(\beta\left(K^{\rho, s p}\right)^{\gamma}\right) \quad$ and $\quad \beta=\frac{\ln (5 h)}{\left(K^{\circ, s p}\right)^{\gamma}\left(1-5^{-\gamma}\right)}$
for the modified Ricker relationship (for the true Ricker, $\gamma=1$) where
$\varsigma_{y} \quad$ reflects fluctuation about the expected recruitment in year y;
$\sigma_{R} \quad$ is the standard deviation of the log-residuals, which is input ($\sigma_{R}=0.45$ and is taken to decrease linearly from this value to 0.1 over the last five years to statistically stabilise estimates of recent recruitment).
$B_{y}^{\rho, s p}$ is the female spawning biomass at the start of year y, computed as:
$B_{y}^{\circ, s p}=\sum_{a=1}^{m} f_{a}^{\circ} w_{a}^{\circ} N_{y a}^{\text {¢ }}$
where
$w_{a}^{g} \quad$ is the begin-year mass of fish of gender g and age a;
$f_{a}^{g} \quad$ is the proportion of fish of gender g and age a that are mature (converted from maturity-at-length, see equation App.B.47); and

$$
\begin{equation*}
R_{0}=K^{\bigcirc, s p} /\left[\sum_{a=1}^{m-1} f_{a}^{\circ} w_{a}^{\circ} e^{\substack{a-1 \\ \sum_{a=0}^{g} M_{a}^{g}}}+f_{m}^{\circ} w_{m}^{\circ} \frac{e^{-\sum_{a=0}^{m-1} M_{a}^{g}}}{1-e^{-M_{m}^{g}}}\right] \tag{B.6}
\end{equation*}
$$

For the Beverton-Holt form, h is bounded above by 0.98 to preclude high recruitment at extremely low spawning biomass, whereas for the modified Ricker form, h is bounded above by 1.5 to preclude extreme compensatory behaviour. The Reference Case uses the modified Ricker form to model recruitment.

App.B.1.3 Total catch and catches-at-age

The fleet-disaggregated catch by mass, in year y is given by:

$$
\begin{equation*}
C_{f y}=\sum_{g} \sum_{a=0}^{m} \tilde{w}_{f y, a+1 / 2}^{g} C_{f y a}^{g}=\sum_{g} \sum_{a=0}^{m} \tilde{w}_{f y, a+1 / 2}^{g} N_{y a}^{g} e^{-M_{a}^{g} / 2} F_{f y} S_{f y a}^{g} \tag{B.7}
\end{equation*}
$$

where
$C_{\text {fya }}^{g} \quad$ is the catch-at-age, i.e. the number of fish of gender g and age a, caught in year y by fleet f;
$F_{f y} \quad$ is the fishing mortality of a fully selected age class, for fleet f in year y (independent of g);

$$
\begin{equation*}
S_{f y a}^{g}=\sum_{l} S_{f y l}^{g} P_{a+1 / 2, l}^{g} \tag{B.8}
\end{equation*}
$$

$S_{\text {fya }}^{g} \quad$ is the commercial selectivity of gender g at age a for fleet f and year y;
$S_{f y l}^{g} \quad$ is the commercial selectivity of gender g at length / for year y, and fleet f;
$\tilde{w}_{f y, a+1 / 2}^{g}=\sum_{l} S_{f y l}^{g} w_{l}^{g} P_{a+1 / 2, l}^{g} / \sum_{l} S_{f y l}^{g} P_{a+1 / 2, l}^{g}$
$\tilde{w}_{f y, a+1 / 2}^{g}$ is the selectivity-weighted mid-year weight-at-age a of gender g for fleet f and year y;
$w_{l}^{g} \quad$ is the weight of fish of gender g and length $l ;$
$P_{a+1 / 2, l}^{g}$ is the mid-year proportion of fish of age a and gender g that fall in the length group $/$ (i.e., $\sum_{l} P_{a+1 / 2, l}^{g}=1$ for all ages a).

The matrix P is calculated under the assumption that length-at-age is log-normally distributed about a mean given by the von Bertalanffy equation, i.e.:
$\ln l_{a} \sim N\left[\ln \left(l_{\infty}\left(1-e^{-\kappa\left(a-t_{0}\right)}\right)\right) ;\left(\frac{\theta_{a}}{l_{\infty}\left(1-e^{-\kappa\left(a-t_{0}\right)}\right)}\right)^{2}\right]$
where θ_{a} is the standard deviation of length-at-age a, which is estimated directly in the model fitting for age 0 , and for ages 1 and above a linear relationship applies:
$\theta_{a}=\left\{\begin{array}{cc}B_{0} & \text { for } a=0 \\ (\beta a+\alpha) & \text { for } 1 \leq a \leq m\end{array}\right.$
with species and gender-specific B_{0}, α and β estimated in the model fitting procedure. A penalty is added to ensure that θ_{a} is increasing with age, i.e. $\beta>0$.

App.B.1.4 Exploitable and survey biomasses

The model estimate of the mid-year exploitable ("available") component of biomass for each species and fleet is calculated by converting the numbers-at-age into mid-year mass-at-age and applying natural and fishing mortality for half the year:
$B_{f y}^{e x}=\sum_{g} \sum_{a=0}^{m} \tilde{w}_{f y, a+1 / 2}^{g} S_{f y a}^{g} N_{y a}^{g} e^{-M_{a}^{g} / 2}\left(1-\sum_{f} S_{f y a}^{g} F_{f y} / 2\right)$
The model estimate of the survey biomass at the start of the year (summer) is given by:
$B_{y}^{\text {suv }}=\sum_{g} \sum_{a=0}^{m_{s}} \tilde{w}_{a}^{g, \text { sum }} S_{a}^{g, \text { sum }} N_{y a}^{g}$
and in mid-year (winter):
$B_{y}^{s u v}=\sum_{g} \sum_{a=0}^{m} \tilde{w}_{a+1 / 2}^{g, w i n} S_{a}^{g, w i n} N_{y a}^{g} e^{-M_{a}^{g} / 2}\left(1-\sum_{f} S_{f y a}^{g} F_{f y} / 2\right)$
where
$S_{a}^{g, s u n / w i n}$ is the survey selectivity of gender g for age a, converted from survey selectivity-at-length in the same manner as for the commercial selectivity (eqn B.8);
$\tilde{w}_{a}^{g, i} \quad$ is the survey selectivity-weighted weight-at-age a of gender g for survey i, computed in the same manner as for the commercial selectivity-weight-at-age (equation App.II.9) and taking account of the begin-year ($\tilde{w}_{y, a}^{g, \text { sum }}$ from $P_{a, l}^{g}$) or mid-year ($\tilde{w}_{y, a+1 / 2}^{g, w i n}$ from $P_{a+1 / 2, l}^{g}$) nature of the surveys.

Note that both the spring and autumn surveys are taken to correspond to winter (mid-year), and that as with the commercial catch the areas-as-fleets approach underlies the use of selectivity to reflect differences between the west and south coast surveys.

It is assumed that the resource is at the deterministic equilibrium that corresponds to an absence of harvesting at the start of the initial year considered, i.e., $B_{1}^{g, s p}=K^{g, s p}$, and the year $y=1$ corresponds to 1917 when catches commence.

App.B. 2 MSY and related quantities

The equilibrium catch for a fully selected fishing proportion F^{*} is calculated as:
$C\left(F^{*}\right)=\sum_{g} \sum_{a} \tilde{w}_{a+1 / 2}^{g} S_{a}^{g} F^{*} N_{a}^{g}\left(F^{*}\right) e^{-\left(\left(M_{a}^{g}+S_{a}^{s} F^{*}\right) / 2\right)}$
where
S_{a}^{g} is the average selectivity across all fleets, for the most recent five years;
$S_{a}^{g}=\frac{\sum_{y=2005}^{2009} \sum_{f} S_{f y a}^{g} F_{f y}}{\max \left(\sum_{y=2005}^{2009} \sum_{f} S_{f y a}^{g} F_{f y}\right)}$
where the maximum is taken over genders and ages; and with
$N_{a}^{g}\left(F^{*}\right)=\left\{\begin{array}{cc}R_{1}\left(F^{*}\right) & \text { for } a=1 \\ N_{a-1}^{g}\left(F^{*}\right) e^{-M_{a-1}^{g}\left(1-S_{a-1}^{g} F^{*}\right)} & \text { for } 1<a<m \\ \frac{N_{m-1}^{g}\left(F^{*}\right) e^{-M_{m-1}^{g}}\left(1-S_{m-1}^{g} F^{*}\right)}{\left(1-e^{-M_{m}^{g}}\left(1-S_{m}^{g} F^{*}\right)\right)} & \text { for } a=m\end{array}\right.$
where
$R_{1}\left(F^{*}\right)=\frac{\alpha B^{\circ}, s p}{\left.\beta+F^{*}\right)} \underset{B^{\rho, s p}\left(F^{*}\right)}{ }$
for a Beverton-Holt stock-recruitment relationship.
The maximum of $C\left(F^{*}\right)$ is then found by searching over F^{*} to give $F_{\text {MSY }}^{*}$, with the associated female spawning biomass given by:

$$
\begin{equation*}
B_{M S Y}^{\odot, s p}=\sum_{a} f_{a}^{\circ} w_{a}^{\odot} N_{a}^{\odot}\left(F_{\mathrm{MSY}}^{*}\right) \tag{B.18}
\end{equation*}
$$

App.B. 3 The likelihood function

The model is fit to CPUE and survey biomass indices, commercial and survey length frequencies, survey age-length keys, as well as to the stock-recruitment curve to estimate model parameters. Contributions by each of these to the negative of the log-likelihood $\left(-\lambda_{n} L\right)$ are as follows ${ }^{2}$.

App.B.3.1 CPUE relative biomass data

The likelihood is calculated by assuming that the observed biomass index (here CPUE) is log-normally distributed about its expected value:
$I_{y}^{i}=\hat{I}_{y}^{i} e^{\varepsilon_{y}^{i}} \quad$ or $\quad \varepsilon_{y}^{i}=\lambda n\left(I_{y}^{i}\right)-\lambda n\left(\hat{I}_{y}^{i}\right)$
where
$I_{y}^{i} \quad$ is the biomass index for year y and series i (which corresponds to a specified species and fleet);

[^1]$\hat{I}_{y}^{i}=\hat{q}^{i} \hat{B}_{f y}^{e x}$ is the corresponding model estimate, where $\widehat{B}_{f y}^{e x}$ is the model estimate of exploitable resource biomass, given by equation B.11;
$\hat{q}^{i} \quad$ is the constant of proportionality for biomass series i; and
$\varepsilon_{y}^{i} \quad$ from $N\left(0,\left(\sigma_{y}^{i}\right)^{2}\right)$.
In cases where the CPUE series are based upon species-aggregated catches (as available pre-1978), the corresponding model estimate is derived by assuming two types of fishing zones: z1) an "M. capensis only zone", corresponding to shallow-water and $\mathrm{z2}$) a "mixed zone" (see diagrammatic representation in Figure B.1).

The total catch of hake of both species (BS) by fleet f in year $y\left(C_{B S, f y}\right)$ can be written as:
$C_{B S, f y}=C_{C, f y}^{z 1}+C_{C, f y}^{z 2}+C_{P, f y}$
where
$C_{C, f y}^{z 1} \quad$ is the M. capensis catch by fleet f in year y in the M. capensis only zone (z1);
$C_{C, f y}^{z 2} \quad$ is the M. capensis catch by fleet f in year y in the mixed zone (z2); and
$C_{P, f y} \quad$ is the M. paradoxus catch by fleet f in year y in the mixed zone.
Catch rate is assumed to be proportional to exploitable biomass. Furthermore, let be the proportion of the M. capensis exploitable biomass in the mixed zone ($\gamma=B_{C, f y}^{e x, z 2} / B_{C, f y}^{e x}$) (assumed to be constant throughout the period for simplicity) and $\psi_{f y}$ be the proportion of the effort of fleet f in the mixed zone in year $y\left(\psi_{f y}=E_{f y}^{z 2} / E_{f y}\right)$, so that:
$C_{C, f y}^{z 1}=q_{C}^{i, z 1} B_{C f y}^{e x, z 1} E_{f y}^{z 1}=q_{C}^{i, z 1}(1-\gamma) B_{C, f y}^{e x}\left(1-\psi_{f y}\right) E_{f y}$
$C_{C, f y}^{z 2}=q_{C}^{i, z 2} B_{C, f y}^{e x, z 2} E_{f y}^{z 2}=q_{C}^{i, z 2} \gamma B_{C, f y}^{e x} \psi_{f y} E_{f y}$ and
$C_{P, f y}=q_{P}^{i} B_{P, f y}^{e x} E_{f y}^{z 2}=q_{P}^{i} B_{P, f y}^{e x} \psi_{f y} E_{f y}$
where
$E_{f y}=E_{f y}^{z 1}+E_{f y}^{z 2}$ is the total effort of fleet f, corresponding to combined-species CPUE series i which consists of the effort in the M. capensis only zone ($E_{f y}^{z 1}$) and the effort in the mixed zone ($E_{f y}^{z 2}$);
$q_{C}^{i, z j} \quad$ is the catchability for M. capensis (C) for biomass series i, and zone $z j$; and
$q_{P}^{i} \quad$ is the catchability for M. paradoxus (P) for biomass series i.
It follows that:
$C_{C, f y}=B_{C, f y}^{e x} E_{f y}\left[q_{C}^{i, z 1}(1-\gamma)\left(1-\psi_{f y}\right)+q_{C}^{i, z 2} \gamma \psi_{f y}\right]$
$C_{P, f y}=B_{P, f y}^{e x} E_{f y} q_{P}^{i} \psi_{f y}$
From solving equations B. 24 and B. 25 :
$s_{f y}=\frac{q_{C}^{i, z 1}(1-\gamma)}{\left\{\frac{C_{C, f y} B_{P, f y}^{e x} q_{P}^{i}}{B_{C, f y}^{e x} C_{P, f y}}-q_{C}^{i, z 2} \gamma+q_{C}^{i, z 1}(1-\gamma)\right\}}$
and:
$\hat{I}_{y}^{i}=\frac{C_{f y}}{E_{f y}}=\frac{C_{f y} B_{P, f y}^{e x} q_{P}^{i} \psi_{f y}}{C_{P, f y}}$

Zone 1 (z1):	Zone 2 (z2):
M. capensis only	Mixed zone
M. capensis:	M. capensis:
biomass $\left(B_{C}^{z 1}\right)$, catch $\left(C_{C}^{z 1}\right)$	biomass $\left(B_{C}^{z 2}\right)$, $\operatorname{catch}\left(C_{C}^{z 2}\right)$
	M. paradoxus:
	biomass $\left(B_{P}\right), \operatorname{catch}\left(C_{P}\right)$ Effort in zone $1\left(E^{21}\right)$

Figure B.1: Diagrammatic representation of the two conceptual fishing zones.

Two species-aggregated CPUE indices are available: the ICSEAF West Coast and the ICSEAF South Coast series. For consistency, q 's for each species (and zone) are forced to be in the same proportion:
$q_{s}^{S C}=r q_{s}^{W C}$
To correct for possible negative bias in estimates of variance $\left(\sigma_{y}^{i}\right)$ and to avoid according unrealistically high precision (and so giving inappropriately high weight) to the CPUE data, lower bounds on the standard deviations of the residuals for the logarithm of the CPUE series have been enforced: for the historic ICSEAF CPUE series (separate West Coast and South Coast series) the lower bound is set to 0.25 , and to 0.15 for the recent GLM-standardised CPUE series, i.e.: $\sigma^{I C S E A F} \geq 0.25$ and $\sigma^{G L M} \geq 0.15$.

The contribution of the CPUE data to the negative of the log-likelihood function (after removal of constants) is then given by:
$-\lambda \mathrm{n} L^{\text {CPUE }}=\sum_{i} \sum_{y}\left[\lambda n\left(\sigma_{y}^{i}\right)+\left(\varepsilon_{y}^{i}\right)^{2} / 2\left(\sigma_{y}^{i}\right)^{2}\right]$
where
$\sigma_{y}^{i} \quad$ is the standard deviation of the residuals for the logarithms of index i in year y.
Homoscedasticity of residuals for CPUE series is customarily assumed 3, so that $\sigma_{y}^{i}=\sigma^{i}$ is estimated in the fitting procedure by its maximum likelihood value:

$$
\begin{equation*}
\hat{\sigma}^{i}=\sqrt{1 / n_{i} \sum_{y}\left(\lambda \mathrm{n}\left(I_{y}^{i}\right)-\lambda \mathrm{n}\left(\hat{I}_{y}^{i}\right)\right)^{2}} \tag{B.30}
\end{equation*}
$$

where n_{i} is the number of data points for biomass index i.
In the case of the species-disaggregated CPUE series, the catchability coefficient q^{i} for biomass index i is estimated by its maximum likelihood value, which in the more general case of heteroscedastic residuals is given by:
$\ln \hat{q}^{i}=\frac{\sum_{y}\left(\ln I_{y}^{i}-\ln \hat{B}_{f y}^{e x}\right) /\left(\sigma_{y}^{i}\right)^{2}}{\sum_{y} 1 /\left(\sigma_{y}^{i}\right)^{2}}$
In the case of the species-combined CPUE, $q_{C}^{W C, z 1}, q_{C}^{W C, z 2}, q_{P}^{W C}, r$ and γ are estimated directly in the fitting procedure.

[^2]
App.B.3.2 Survey biomass data

Data from the research surveys are treated as relative biomass indices in a similar manner to the speciesdisaggregated CPUE series above, with survey selectivity function $S_{a}^{g, \text { sum } / w i n}$ replacing the commercial selectivity $S_{\text {fya }}^{g}$ (see equations B. 12 and B. 13 above, which also take account of the begin- or mid-year nature of the survey).

An estimate of sampling variance is available for most surveys and the associated σ_{y}^{i} is generally taken to be given by the corresponding survey CV. However, these estimates likely fail to include all sources of variability, and unrealistically high precision (low variance and hence high weight) could hence be accorded to these indices. The contribution of the survey data to the negative log-likelihood is of the same form as that of the CPUE biomass data (see equation B.29). The procedure adopted takes into account an additional variance $\left(\sigma_{A}\right)^{2}$ which is treated as another estimable parameter in the minimisation process, i.e:
$-\lambda \mathrm{n} L^{\text {Suvey }}=\sum_{i} \sum_{y}\left[\lambda \mathrm{n}\left(\sqrt{\left(\sigma_{y}^{i}\right)^{2}+\left(\sigma_{A}\right)^{2}}\right)+\left(\varepsilon_{y}^{i}\right)^{2} / 2\left(\left(\sigma_{y}^{i}\right)^{2}+\left(\sigma_{A}\right)^{2}\right)\right]$
This procedure is carried out enforcing the constraint that $\left(\sigma_{A}\right)^{2}>0$, i.e. the overall variance cannot be less than its externally input component.

In June 2003, the trawl gear on the Africana was changed and a different value for the multiplicative bias factor q is taken to apply to the surveys conducted with the new gear. Calibration experiments have been conducted between the Africana with the old gear (hereafter referred to as the "old Africana") and the Nansen, and between the Africana with the new gear ("new Africana") and the Nansen, in order to provide a basis to relate the multiplicative biases of the Africana with the two types of gear ($q_{\text {old }}$ and $q_{\text {new }}$). A recent calibration analysis based on "Model 1" (see Table 1, "Model 1" of Smith et al., 2013) provided the following estimates:
$\begin{array}{ll}\left(q^{\text {new }} / q^{\text {old }}\right)^{\text {capensis }}=0.652 & \text { with } \mathrm{SE}=0.073 \text { and } \\ \left(q^{\text {new }} / q^{\text {old }}\right)^{\text {paradooxus }}=0.883 & \text { with } \mathrm{SE}=0.082 .\end{array}$
The following contribution is therefore added as a penalty (or a log prior in a Bayesian context) to the negative loglikelihood in the assessment:
$-\lambda n L^{q-c h}=\left(\lambda n q_{\text {new }}-\lambda n q_{\text {old }}-\Delta \lambda n q\right)^{2} / 2 \sigma_{\Delta \lambda n q}^{2}$
A different length-specific selectivity is estimated for the "old Africana" and the "new Africana".
The survey's catchability coefficients q (for the survey with the old Africana gear) are constrained to values below 1 (i.e. it is assumed that the nets do not herd the hake):
pen $^{q}=\sum_{i}\left(q_{\text {old }}^{i}-1\right)^{2} / 0.02^{2} \quad$ if $\quad q_{\text {old }}^{i}>1$

App.B.3.3 Commercial proportions at length

Commercial proportions at length from the offshore trawl fleet cannot be disaggregated by species and gender as the data collected did not distinguish these. The model is therefore fit to the proportions at length as determined for both species and gender combined. The catches made by the inshore trawl fleet are assumed to consist of M. capensis only, and species and sex information is available over the 2000-2010 period for the longline fleet.

The catches at length are computed as:

$$
\begin{equation*}
C_{f y l}=\sum_{s} \sum_{g} \sum_{a=0}^{m} N_{s y a}^{g} F_{s f y} S_{s f y l}^{g} P_{s, a+1 / 2, l}^{g} e^{-M_{s a}^{g} / 2}\left(1-\sum_{f} S_{s f y a}^{g} F_{f y} / 2\right) \tag{B.35}
\end{equation*}
$$

where the summation over species and gender is taken only where appropriate.
The predicted proportions at length:
$p_{y l}^{i}=C_{f y l} / \sum_{l^{\prime}} C_{f y l}$
The contribution of the proportion at length data to the negative of the log-likelihood function when assuming an "adjusted" lognormal error distribution (Punt and Kennedy, 1997) is given by:

$$
\begin{equation*}
-\lambda n L^{\text {length }}=0.1 \sum_{y} \sum_{l}\left[\lambda n\left(\sigma_{l e n}^{i} / \sqrt{p_{y l}^{i}}\right)+p_{y l}^{i}\left(\lambda n p_{y l}^{i}-\lambda n \hat{p}_{y l}^{i}\right)^{2} / 2\left(\sigma_{l e n}^{i}\right)^{2}\right] \tag{B.37}
\end{equation*}
$$

where
the superscript ' i ' refers to a particular series of proportions at length data which reflect a specified fleet, species and sex (or combination thereof); and
$\sigma_{\text {len }}^{i} \quad$ is the standard deviation associated with the proportion at length data, which is estimated in the fitting procedure by:

$$
\begin{equation*}
\hat{\sigma}_{l e n}^{i}=\sqrt{\sum_{y} \sum_{l} p_{y l}^{i}\left(\ln p_{y l}^{i}-\ln \hat{p}_{y l}^{i}\right)^{2} / \sum_{y} \sum_{l} 1} \tag{B.38}
\end{equation*}
$$

The initial 0.1 multiplicative factor in equation B .37 is a somewhat arbitrary downweighting to allow for correlation between proportions in adjacent length groups. The coarse basis for this adjustment is the ratio of effective number of age-classes present to the number of length groups in the minimisation, under the argument that independence in variability is likely to be more closely related to the former.
Commercial proportions at length are incorporated in the likelihood function using equation B.37, for which the summation over length I is taken from length $I_{\text {minus }}$ (considered as a minus group) to $I_{\text {plus }}$ (a plus group). The length for the minus- and plus-groups are fleet specific and are chosen so that typically a few percent, but no more, of the fish sampled fall into these two groups.

App.B.3.4 Survey proportions at length

The survey proportions at length are incorporated into the negative of the log-likelihood in an analogous manner to the commercial catches-at-age, assuming an adjusted log-normal error distribution (equation B.37). In this case however, data are disaggregated by species, and for some surveys further disaggregated by gender:
$p_{s y l}^{g, s u l v}=\frac{C_{s y l}^{g, s u l v}}{\sum_{g} \sum_{l^{\prime}} C_{s y l^{\prime}}^{g, s u n}}$
is the observed proportion of fish of species s, gender g and length $/$ from survey surv in
year y; and
$\hat{p}_{s y l}^{g, s u r v}$ is the expected proportion of fish of species s, gender g and length / in year y in the survey surv, given by:
$\hat{p}_{s y l}^{g, s u r v}=\frac{\sum_{a} S_{s l}^{g, s u m} P_{s a l}^{g} N_{s y a}^{g}}{\sum_{g} \sum_{l^{\prime}} \sum_{a} S_{s l l^{g}}^{g, s u m} P_{s a l}^{g} N_{s y a}^{g}}$
for begin-year (summer) surveys, or
$\hat{p}_{s y l}^{g, s u v}=\frac{\sum_{a} S_{s l}^{g, w i n} P_{s, a+1 / 2, l}^{g} N_{s y a}^{g} e^{-M_{s a}^{g} / 2}\left(1-\sum_{f} S_{s f y a}^{g} F_{s f y} / 2\right)}{\sum_{g} \sum_{l^{\prime}} \sum_{a} S_{s l^{\prime}}^{g, w i n} P_{s, a+1 / 2, l}^{g} N_{s y a}^{g} e^{-M_{s a l}^{g} / 2}\left(1-\sum_{f} S_{s f y a}^{g} F_{s f y} / 2\right)}$
for mid-year (autumn, winter or spring) surveys.

8.II.3.5 Age-length keys

Under the assumption that fish are sampled randomly with respect to age within each length-class, the contribution to the negative log-likelihood for the ALK data (ignoring constants) is:
$-\ln L^{A L K}=-w \sum_{i} \sum_{l} \sum_{a}\left[A_{i, l, a}^{\text {obs }} \ln \left(\hat{A}_{i, l, a}\right)-A_{i, l, a}^{\text {obs }} \ln \left(A_{i, l, a}^{\text {obs }}\right)\right]$
where
$w \quad$ is a downweighting factor to allow for overdispersion in these data compared to the expectation for a multinomial distribution with independent data; this downweighting factor is somewhat arbitrarily set to 0.01 to avoid these data overriding trend information in the indices of biomass;
$A_{i, a, l}^{\text {obs }}$ is the observed number of fish of size class / that fall in age a, for ALK i (a specific combination of survey, year, species and gender);
$\hat{A}_{i, a, l} \quad$ is the model estimate of $A_{i, a, l}^{\text {obs }}$, computed as:
$\hat{A}_{i, a, l}=W_{i, l} \frac{C_{i, a, l} \tilde{A}_{a, l}}{\sum_{a^{\prime}} C_{i, a^{\prime}, l} \tilde{A}_{a^{\prime}, l}}$
where
$W_{i, l} \quad$ is the number of fish in length class / that were aged for ALK i,
$\tilde{A}_{a, l}=\sum_{a} P\left(a^{\prime} \mid a\right) A_{a, l}$ is the ALK for age a and length $/$ after accounting for age-reading error,
with $P\left(a^{\prime} \mid a\right)$, the age-reading error matrix, representing the probability of an animal of true age a being aged to be that age or some other age a^{\prime}.

Age-reading error matrices have been computed for each reader and for each species as reported in Appendix A.
When multiple readers age the same fish, these data are considered to be independent information in the model fitting.

App.B.3.6 Stock-recruitment function residuals

The stock-recruitment residuals are assumed to be log-normally distributed. Thus, the contribution of the recruitment residuals to the negative of the log-likelihood function is given by:
$-\lambda n L^{S R}=\sum_{s}\left[\sum_{y=y 1}^{y 2} \varsigma_{s y}{ }^{2} / 2 \sigma_{R}^{2}+\left(\sum_{y=y 1}^{y 2} \varsigma_{s y}\right)^{2} / 0.01^{2}\right]$
where
$\zeta_{s y}$ is the recruitment residual for species s, and year y, which is assumed to be log-normally distributed with standard deviation σ_{R} and which is estimated for year y1 to $y 2$ (see equation B.4) (estimating the stock-recruitment residuals is made possible by the availability of catch-at-age data, which give some indication of the age-structure of the population); and
$\sigma_{R} \quad$ is the standard deviation of the log-residuals, which is input.
The stock-recruitment residuals are estimated for years 1985 to 2013, with recruitment for other years being set deterministically (i.e. exactly as given by the estimated stock-recruitment curve) as there is insufficient catch-at-age information to allow reliable residual estimation for earlier years. A limit on the recent recruitment fluctuations is set by having the σ_{R} (which measures the extent of variability in recruitment - see equation - App.B.43) decreasing linearly from 0.45 in 2004 to 0.1 in 2009, thereby effectively forcing recruitment over the last years to lie closer to the stock-recruitment relationship curve.

The second term on the right hand side is introduced to force the average of the residuals estimated over the period from $y 1$ to $y 2$ to be close to zero, to assist stabilise the estimation.

App.B. 4 Model parameters

App.B.4.1 Estimable parameters

The primary parameters estimated are the species-specific female virgin spawning biomass ($K_{s}^{\ell_{s p}}$) and "steepness" (h_{s}) and γ (for the modified Ricker curve used in the Reference Case, see equation B.4b) of the stock-recruitment relationship. The standard deviations σ^{i} for the CPUE series residuals (the species-combined as well as the GLMstandardised series) as well as the additional variance $\left(\sigma_{A}^{i}\right)^{2}$ for each species are treated as estimable parameters in the minimisation process. Similarly, in the case of the species-combined CPUE, $q_{C}^{W C, z 1}, q_{C}^{W C, z 2}, q_{P}^{W C}, r$ and γ are directly estimated in the fitting procedure.

The species- and gender-specific von Bertalanffy growth curve parameters (I_{∞}, κ and t_{0}) are estimated directly in the model fitting process, as well as the B_{0}, α and β, values used to compute the standard deviation of the length-at-age a.

The following parameters are also estimated in the model fits undertaken (if not specifically indicated as fixed):

App.B.4.1.1 Natural mortality:

Natural mortality $\left(M_{s a}^{g}\right)$ is assumed to be age-specific and is calculated using the following functional form (the selection of the specific form here is based on convenience and is somewhat arbitrary):

$$
M_{s a}^{\circ}=\left\{\begin{array}{lll}
M_{s 2}^{\circ} & \text { for } & a \leq 1 \tag{B.44}\\
\alpha_{s}^{M}+\frac{\beta_{s}^{M}}{a+1} & \text { for } & 2 \leq a \leq 5 \\
M_{s 5}^{\circ} & \text { for } & a>5
\end{array}\right.
$$

and

$$
\begin{equation*}
M_{s a}^{\text {males }}=v^{s} M_{s a}^{\text {females }} \tag{B.45}
\end{equation*}
$$

$M_{s 0}$ and $M_{s 1}$ are set equal to $M_{s 2}\left(=\alpha_{s}^{M}+\beta_{s}^{M} / 3\right)$ as there are no data (hake of ages younger than 2 are rare in catch and survey data) which would allow independent estimation of $M_{s 0}$ and $M_{s 1}$.

When M values are estimated in the fit, a penalty is added to the total $-\operatorname{InL}$ so that $M_{s 2} \geq M_{s 5}$:

$$
\begin{equation*}
\text { pen }^{M}=\sum_{s}\left(M_{s 5}-M_{s 2}\right)^{2} / 0.01^{2} \quad \text { if } M_{s 2}<M_{s 5} \tag{B.46}
\end{equation*}
$$

For the Reference Case, the following values are fixed: $M_{s 2}^{\circ}=0.75$ and $M_{s 5}^{\circ}=0.375$ for both species and genders.

App.B.4.1.2 Stock-recruitment residuals:

Stock-recruitment residuals $\varsigma_{s y}$ are estimable parameters in the model fitting process. They are estimated separately for each species from 1985 to the present, and set to zero pre-1985 because there are no catch-at-length data for that period to provide the information necessary to inform estimation.

Table B. 1 summarises the estimable parameters, excluding the selectivity parameters.

App.B.4.1.3 Survey fishing selectivity-at-length:

The survey selectivities are estimated directly for seven pre-determined lengths for M. paradoxus and M. capensis. When the model was fitted to proportion-at-age rather than proportion-at-length, survey selectivities were estimated
directly for each age (i.e. seven age classes). The lengths at which selectivity is estimated directly are survey specific (at constant intervals between the minus and plus groups) and are given in Table B.2. Between these lengths, selectivity is assumed to change linearly. The slope (trend) from lengths $I_{\text {minus }}+1$ to $I_{\text {minus }}$ is assumed to continue exponentially to lower lengths down to length 1 , and similarly the slope from lengths $I_{\text {plus }}-1$ to $I_{\text {plus }}$ for M. paradoxus and M. capensis to continue for greater lengths.

For the South Coast spring and autumn surveys, gender-specific selectivities are estimated for M. paradoxus.. Furthermore, the female selectivities are scaled down by a parameter estimated for each of these two surveys to allow for the male predominance in the survey catch. This is done for M. paradoxus on the South Coast only, as the catch-at-length data for M. paradoxus West Coast surveys and M. capensis on both coasts do not show substantial gender differences

A penalty is added to the total -InL to smooth the selectivities to smooth the selectivities by penalising deviations from straight line dependence (the choice of a weighting of 3 was made empirically to balance this term having sufficient but not undue influence):
pen $^{\text {survS }}=\sum_{i} \sum_{L=L_{1}+1}^{L_{n}-1} 3\left(S_{L-1}^{i}-2 S_{L}^{i}+S_{L+1}^{i}\right)^{2}$
where i is a combination of survey, species and gender.

App.B.4.1.4 Commercial fishing selectivity-at-length:

The fishing selectivity-at-length for each species and fleet, $S_{s f l}$, is estimated in terms of a double normal curve given by:
$S_{\text {sfl }}=\exp \left(-\frac{(l-l \max)^{2}}{2 \sigma_{\text {Left }}^{2}}\right) \quad$ for $l \leq l \max$
$S_{\text {sfl }}=\exp \left(-\frac{(l-l \max)^{2}}{2 \sigma_{\text {Right }}^{2}}\right) \quad$ for $l>l \max$
where $\sigma_{\text {Left }}, \sigma_{\text {Right }}$ and $l_{\text {max }}$ are estimable parameters.
Periods of fixed and changing selectivity have been assumed for the offshore trawl fleet to take account of the change in the selectivity at low ages over time in the commercial catches, likely due to the phasing out of the (illegal) use of net liners to enhance catch rates.

Two selectivity periods are also assumed for the longline fleet.
On the South Coast, for M. paradoxus, the female offshore trawl selectivity (only the trawl fleet is assumed to catch M. paradoxus on the South Coast) is scaled down by a factor taken as the average of those estimated for the South Coast spring and autumn surveys. Although there is no gender information for the commercial catches, the South Coast spring and autumn surveys catch a much higher proportion of male M. paradoxus than female (ratios of about 7:1 and 3.5:1 for spring and autumn respectively). This is assumed to reflect a difference in distribution of the two genders which would therefore affect the commercial fleet similarly.

Details of the fishing selectivities (including the number of parameters estimated) that are used in the assessment are shown in Table B.3.

App.B.4.2 Input parameters and other choice for application to hake

App.B.4.2.1 Age-at-maturity:
The proportion of fish of species s, gender g and length / that are mature is assumed to follow a logistic curve with the parameter values given in Table App.A.8:
$f_{s l}^{g}=\left(1+e^{\frac{-\frac{l-l_{s, j}, g}{\Delta^{s, s}}}{}}\right)^{-1}$

- Maturity-at-length is then converted to maturity-at-age as follows:

$$
\begin{equation*}
f_{s a}^{g}=\sum_{l} f_{s l}^{g} P_{a, l}^{g} \tag{B.50}
\end{equation*}
$$

App.B.4.2.2 Weight-at-length:

The weight-at-length for each species and gender is calculated from the mass-at-length function, with values of the parameters for this function listed in Table App.A.9.

App.B.4.2.3 Minus- and plus-groups

Because of a combination of gear selectivity and mortality, a relatively small number of fish in the smallest and largest length classes are caught. In consequence, there can be relatively larger errors (in terms of variance) associated with these data. To reduce this effect, the assessment is conducted with minus- and plus-groups obtained by summing the data over the lengths below and above $I_{\text {minus }}$ and $I_{\text {plus }}$ respectively. The minus- and plus-group used are given in Table B.4. Furthermore, the proportions at length data (both commercial and survey) are summed into 2 cm length classes for the model fitting.

Table B.1: Parameters estimated in the model fitting procedure, excluding selectivity parameters.

	No of parameters	Parameters estimated	Bounds enforced
K°	2	$\ln \left(K_{c a p}^{\ominus}\right)$ and $\ln \left(K_{p a r a}{ }_{\text {par }}\right)$	(3.5; 9.0)
h	2	$h_{\text {cap }}$ and $h_{\text {para }}$	(0.2; 0.98) for $\mathrm{BH},(0.2 ; 1.5)$ for modified Ricker
Additional variance	2	$\sigma_{A, \text { cap }}$ and $\sigma_{A, p a r a}$	$(0 ; 0.5)$
Recruitment residuals	58	$\zeta_{\text {cap,1985-2013 }}$ and $\zeta_{\text {para, 1985-2013 }}$	$(-5 ; 5)$
$\sigma_{\text {CPUE }}$	6	1 for each series	ICSEAF: $(0.25 ; 1), \operatorname{GLM}(0.15 ; 1)$
ICSEAF CPUE	5	$q_{\mathrm{C}}{ }^{W C, z l}, q_{\mathrm{C}}{ }^{\mathrm{WC}, z 2}, q_{\mathrm{P}}{ }^{\mathrm{WC}}, r$ and γ_{R}	q and $r:(0,10)$, and $\gamma_{R}(0 ; 1)$
θ_{a}	12	For each species and gender: θ_{0}, θ_{1} and θ_{14}	$\theta_{0}:(1 ; 100), \theta_{1}$ and $\theta_{14}:(1 ; 100)$
Growth	12	For each species and gender: L_{5}, κ and t_{0}	$L_{5}:(30 ; 60) \kappa:(0.00005 ; 0.2)$ and $t_{0}:(-10 ; 0)$

Table B.2: Lengths (in cm) at which survey selectivity is estimated directly.

WO0000002	West coast summer	13	18	23	28	32	37	42	47
	West coast winter	13	18	24	29	35	40	46	51
	South coast spring	21	26	30	35	39	44	48	53
	South coast autumn	21	26	31	36	42	47	52	65
$\begin{aligned} & \text { W } \\ & \text { y } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$	West coast summer	13	20	26	33	39	46	52	59
	West coast winter	13	17	21	30	40	47	54	61
	South coast spring	13	19	28	38	46	54	63	71
	South coast autumn	13	19	28	36	44	52	61	69

Table B.3: Details for the commercial selectivity-at-length for each fleet (trawl unless otherwise indicated) and species combination for the Reference Case, as well as indications of the nature of the data which are available.

	No of est. parameters	M. paradoxus Comments	No of est. parameters	M. capensis Comments	Data available
1. West coast offshore 1917-1976 1977-1984 1985-1992 1993-2013	0 3 0 3	average between 77-84 and 93-2013 period double logistic ($\sigma_{\text {Left }} \sigma_{\text {Right }}$ and $I_{\max }$) linear change between 1984 and 1993 selectivity double logistic ($\sigma_{\text {Left, }} \sigma_{\text {Right }}$ and $I_{\max }$)		average between 77-84 and 93-2013 period as $93-13$ but $\sigma_{\text {left }}$ same difference as for paradoxus btw 77-84 and 93-13 periods linear change between 1984 and 1993 selectivity Based on inshore selectivity: $I_{\text {max }}=I_{\text {max }}$ (inshore) $+5, \sigma_{\text {teft }}=\sigma_{\text {teft }}$ (inshore) and $\sigma_{\text {Right }}=3^{*} \sigma_{\text {Right }}$ (inshore)	species combined
2. South coast offshore 1917-1976 1977-1984 1985-1992 1993-2013	0 3 0 3 0	double logistic ($\sigma_{\text {Left, }} \sigma_{\text {Right }}$ and $I_{\text {max }}$) double logistic ($\sigma_{\text {Left }} \sigma_{\text {Right }}$ and $I_{\text {max }}$) linear change between 1984 and 1993 selectivity double logistic ($\sigma_{\text {Left, }} \sigma_{\text {Right }}$ and $I_{\max }$) female downscaling factor (av. of SC spring and autumn surveys's factors)	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	average between 77-84 and 93-2013 period as $93-13$ but $\sigma_{\text {Left }}$ same difference as for paradoxus btw 77-84 and 93-13 periods linear change between 1984 and 1993 selectivity Based on inshore selectivity: $I_{\max }=I_{\max }$ (inshore) $+5, \sigma_{\text {Left }}=\sigma_{\text {teft }}$ (inshore)	species combined
3. South coast inshore	-	-	3	double logistic ($\sigma_{\text {Leftt }} \sigma_{\text {Right }}$ and $\left.I_{\text {max }}\right)$	M. capensis
4. West coast longline 1984-1999 2000-2005 2006-2013	$\begin{aligned} & 1 \\ & 3 \\ & 3 \\ & 1 \\ & 0 \end{aligned}$	estimated, same for males and females) double logistic ($\sigma_{\text {Left }} \sigma_{\text {Right }}$ and $I_{\text {max }}$) double logistic ($\sigma_{\text {Left }} \sigma_{\text {Right }}$ and $I_{\text {max }}$) $I_{\max }^{06-13}=I_{\max }^{00-05}-\delta_{2}^{w C p a r o}\left(\delta_{2}^{w C p a r o}\right.$ estimated, same for males and females)	$\begin{aligned} & 1 \\ & 3 \\ & 3 \\ & 1 \\ & 0 \end{aligned}$	$I_{\max }{ }^{84-99}=I_{\max }^{00.05}-\delta_{1}{ }^{\text {wccop }}\left(\delta_{1}{ }^{\text {wccop }}\right.$ estimated, same for males and females) double logistic ($\sigma_{\text {Left }}, \sigma_{\text {Right }}$ and $\left.I_{\text {max }}\right)$ double logistic ($\sigma_{\text {Left, }} \sigma_{\text {Right }}$ and $\left.I_{\text {max }}\right)$ $I_{\max }{ }^{06-13}=I_{\max }^{00.05}-\delta_{2}{ }^{\text {Wccop }}\left(\delta_{2}{ }^{\text {Wccop }}\right.$ estimated, same for males and females)	species and gender combined species and gender disaggregated
5. South coast longline $1984-1999$ $2000-2005$ $2006-2013$	$\begin{aligned} & 1 \\ & 3 \\ & 3 \\ & 1 \\ & 0 \end{aligned}$		$\begin{aligned} & 1 \\ & 3 \\ & 3 \\ & 1 \\ & 0 \end{aligned}$	$I_{\max }{ }^{84-99} I_{\max }{ }^{00.05}-\delta_{1}{ }^{\text {sccop }}\left(\delta_{1}{ }^{\text {sccop }}\right.$ estimated, same for males and females) double logistic ($\sigma_{\text {Left, }} \sigma_{\text {Right }}$ and $I_{\text {max }}$) double logistic ($\sigma_{\text {Leftr }} \sigma_{\text {Right }}$ and $I_{\text {max }}$) $I_{\max }{ }^{06-13}=I_{\max }{ }^{84-99}-\delta_{2}{ }^{\text {sccop }}\left(\delta_{2}{ }^{\text {sccop }}\right.$ estimated, same for males and females)	species and gender combined species and gender disaggregated
6. South coast handline	-	-	0	parameters taken as average of SC longline (female, 00-05) and inshore parameters	-
Total	28		19		

Table B.4: Minus- and plus-groups taken for the surveys and commercial proportion at length data.

SURVEY DATA		Sex-aggregated		Males		Females	
		Minus	Plus	Minus	Plus	Minus	Plus
West coast summer	M. paradoxus	13	47	20	47	20	47
	M. capensis	13	59	20	59	20	59
West coast winter	M. paradoxus	13	51	-	-	-	-
	M. capensis	13	61	-	-	-	-
South coast spring	M. paradoxus	21	53	20	53	20	53
	M. capensis	13	71	20	71	20	71
South coast autumn	M. paradoxus	21	65	20	59	20	59
	M. capensis	13	69	20	69	20	69
COMMERCIAL DATA		Sex-aggregated		Males		Females	
Fleet	Species	Minus	Plus	Minus	Plus	Minus	Plus
West coast offshore trawl	species combined	23	65	-	-	-	-
South coast offshore trawl	species combined	27	75	-	-	-	-
South coast inshore trawl	M. capensis	27	65	-	-	-	-
West coast longline	species combined	45	91	-	-	-	-
	M. paradoxus	-	-	41	85	41	95
	M. capensis	-	-	41	85	41	95
South coast longline	M. paradoxus	-	-	41	85	41	80
	M. capensis	45	91	41	95	41	80

[^0]: ${ }^{1}$ In the interests of less cumbersome notation, subscripts have been separated by commas only when this is necessary for clarity.

[^1]: ${ }^{2}$ Strictly it is a penalised log-likelihood which is maximised in the fitting process, as some contributions that would correspond to priors in a Bayesian estimation process are added.

[^2]: ${ }^{3}$ There are insufficient data in any series to enable this to be tested with meaningful power.

