Autocorrelated sardine movement

C.L. de Moor* and D.S. Butterworth ${ }^{*}$
Correspondence email: carryn.demoor@uct.ac.za

The sardine two-mixing stock hypothesis requires a model to inform on the future annual proportion of "west" stock recruits that move to the "south" stock. Previous projections have assumed three different models (de Moor and Butterworth 2013a):

NoMove - no future movement
MoveB - future movement is based on a relationship with the ratio of "south" to "west" stock 1+ biomass
MoveE - future movement "switches" between increasing or decreasing towards an equilibrium proportion, based on whether a favourable or unfavourable environment exists on the south coast.

NoMove was included purely as an extreme scenario, while it was recently agreed that MoveB would be removed from further simulations (Anon, 2013, SPSWG, 2014). A further model has been proposed, and is detailed in the Appendix:
MoveAutoC - future autocorrelated movement

Figure 1 shows the future simulated annual proportions of "west" stock recruits moving to the "south" stock. The proportions moving for NoMove, MoveE and MoveAutoC are all independent of the simulated biomass and are thus the same for both catch and no catch scenarios. One may a priori expect the median proportion moving to decrease slower than that plotted in Figure 1 under MoveAutoC. However, the rapid movement of the median towards around 0.5 is due to the low autocorrelation in logit space (Figure 2) logit transformation of the proportion moving is necessary to maintain the $0-1$ range.

Figures 3 and 4 show the future simulated 1+ biomass trajectories for NoMove, MoveE and MoveAutoC.

References

Anon. 2013. International Review Panel Report for the 2013 International Fisheries Stock Assessment Workshop. University of Cape Town, Cape Town, 2-6 December 2013. 22pp
de Moor, C.L. and Butterworth, D.S. 2013a. Comparisons of alternative single-area sardine TAC Management Procedures. Department of Agriculture, Forestry and Fisheries Document FISHERIES/2013/NOV/SWG-PEL/33. 23pp.

[^0]de Moor, C.L. and Butterworth, D.S. 2013b. Interim OMP-13 v2. Department of Agriculture, Forestry and Fisheries Document FISHERIES/2013/JUL/SWG-PEL/15. 18pp.
SPSWG, 2014. Aide memoire of the small pelagic scientific working group meeting on $4^{\text {th }}$ February 2014. Department of Agriculture, Forestry and Fisheries Document FISHERIES/2014/FEB/SWG-PEL/Aide memoire 04 February. 3pp.

Figure 1. The median and 90% probability interval of future projected proportions of "west" stock recruits moving to the "south" stock, assuming different movement relationships: a) MoveE and b) MoveAutoC.

Figure 2. The median estimated annual proportions of "west" stock recruits that move to the "south" stock and the logit transformation of these proportions.
MARAM/IWS/DEC14/Sardine/BG4

under a no catch scenario and different movement relationships: a) NoMove, b) MoveE and c) MoveAutoC.
MARAM/IWS/DEC14/Sardine/BG4

under Interim OMP-13v2 (de Moor and Butterworth 2013b) and different movement relationships: a) NoMove, b) MoveE and c) MoveAutoC.

Appendix : Autocorrelated movement

In order to maintain $0 \leq$ move $_{y} \leq 1$, the autocorrelated movement is calculated in logit-space. Thus setting
move $_{y}^{*}=\ln \left(\frac{\text { move }_{y}}{1-\text { move }_{y}}\right)$, for $1994 \leq y \leq 2011$
$\rho_{\text {move }}=\frac{\sum_{y=1994}^{2010} \text { move }_{y}^{*} \text { move }_{y+1}^{*}}{\sum_{y=1994}^{2010}\left(\text { move }_{y}^{*}\right)^{2}}$
$\sigma_{\text {move }}^{2}=\frac{\sum_{y=1994}^{2010}\left(\text { move }_{y+1}^{*}-\rho_{\text {move }} \text { move }_{y}^{*}\right)^{2}}{2010-1994+1}$

Future proportions moving are thus calculated as follows:
move $_{y}=\frac{\exp \left(\text { move }_{y}^{*}\right)}{1+\exp \left(\text { move }_{y}^{*}\right)}$, where
move $e_{y}^{*}=\rho_{\text {move }} \times$ move $e_{y-1}^{*}+\sqrt{1-\rho_{\text {move }}^{2}} \varepsilon_{y}$, with $\varepsilon_{y} \sim N\left(0, \sigma_{\text {move }}^{2}\right)$

[^0]: * MARAM (Marine Resource Assessment and Management Group), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701, South Africa.

