Updating the Rademeyer and Butterworth (2014)
hake model to take into account the effects of hake cannibalism and inter-sepcies predation for two Cape hake species Merluccius capensis and M. paradoxus

Andrea Ross-Gillespie

Background

- Two morphologically similar species
- M. capensis (shallow water)

- M. paradoxus (deep water)

Background

- M. capensis found inshore of M. paradoxus
- Species overlap between 150-440m depths
- Juveniles predominate inshore of adults
- Size of fish increases with depth
- Hake are opportunistic feeders
- Substantial predation of larger M. capensis on smaller M. paradoxus, as well as same-species cannibalism
- Hake is eaten by many organisms but because it is the dominant organism in its habitat, its major predator is probably other hake

Modelling predation

- Take predation into account in natural mortality

$$
Z_{s a y}=M_{s a} \quad \rightarrow \quad Z_{s a y}=M_{s}^{b s a l}+P_{s a y}
$$

- Number of hake lost to predation affected by:
- Number of predators
- Number of prey
- Preference a predator exhibits for prey of different species and age classes

$$
P_{s a y}=\sum_{s_{p} a_{p}} N_{y}^{s_{p} a_{p}} \gamma_{s a}^{s_{p} a_{p}} \frac{v_{s}^{s_{p}} \theta^{s_{p} a_{p}}}{1+\sum_{s a} \widetilde{\mathbf{V}}_{s}^{s_{p}} N_{\text {say }} \gamma_{s a}^{s_{s} a_{p}}+\widetilde{\mathrm{V}}_{\text {other }}^{s_{p}} O_{o \text { other }}^{s_{p} a_{p}}}
$$

Diet data

- Proportion of hake in diet of hake predators
- Predator preference for prey by prey species and size
- No direct estimate for daily ration - use rough guideline of 1-4 \% of body mass

Results thus far

- M. paradoxus biomass increases when the M. capensis population is reduced by the fishery
- M. paradoxus depletion levels according to the predation model are not as low as indicated by the non-predation model
- Model battles to fit both the M. paradoxus proportion of hake in diet and the historical CPUE data simultaneously

Results thus far

Something that could help...

- Proporiton of hake in diet from diet data = counts of non-empty stomachs that contain $>50 \%$ hake prey against the total number of non-empty stomachs.
- Proporiton of hake in diet from model $=$ the total mass of hake consumed divided by the total mass of prey consumed.
- These two quantities are not directly comparable

Potential solution?

- Option (A): Leave the diet data as are, and calculate the model-predicted proportion of hake in diet by numbers.
- Option (B): Leave the model proportions as are, and weight the diet data by prey length to give more weight to larger prey items.

