An overview of the key issues to be discussed relating to the South African sardine two-mixing-stock hypothesis

#### MARAM International Stock Assessment Workshop 30<sup>th</sup> November 2015

#### Carryn de Moor



Marine Resource Assessment and Management Group (MARAM) Department of Mathematics and Applied Mathematics University of Cape Town

## Outline

- Fishery and Data
- Stock Structure Hypotheses
- Sardine Two Stock Assessment Model Fits
- Considering the Parasite Data

## Outline

- Fishery and Data
- Stock Structure Hypotheses
- Sardine Two Stock Assessment Model Fits
- Considering the Parasite Data

## **Catch History**



Small Pelagic Fishery: primarily sardine and anchovy, also round herring, chub mackerel and juvenile horse mackerel

#### Data

- Two annual hydro-acoustic surveys
  - November total biomass; split at Cape Agulhas
  - May recruitment; split at Cape Infanta

#### Hydro-acoustic Surveys



Provided by Janet Coetzee

#### Hydro-acoustic Surveys



#### **Distributional Shift**









#### Provided by Janet Coetzee

#### Data

- Two annual hydro-acoustic surveys
  - November total biomass; split at Cape Agulhas
  - May recruitment; split at Cape Infanta
- Limited ageing information excluded from current assessment
- Proportion at length data
  - Commercial catches (quarterly)
  - November survey
- Parasite prevalence at length data \*NEW\*

## Outline

- Fishery and Data
- Stock Structure Hypotheses
- Sardine Two Stock Assessment Model Fits
- Considering the Parasite Data

#### Stock Structure Hypotheses

- Single sardine stock
  - used historically
  - previous & current OMPs were developed using a single stock operating model

• Two sardine stocks ("west" and "south") split at Cape Agulhas

- a two stock model has been under development since 2009

- a two mixing stock hypothesis produced an acceptable fit to the data in time for OMP-14 development, but future projections were heavily dependent on assumption of future stock mixing

• Current OMP includes some spatial management advice (i.e. based qualitatively not quantitatively on two stock hypothesis)

# Key Model Structure/Assumptions

- Operating model conditioned over Nov 1983 Nov 2014
- Quarterly time steps
- Catch-at-age taken in a pulse each quarter
- Maturity ogive that is time-dependent (4 time-periods) \*NEW\*
- Time-invariant juvenile and adult M
- Hockey stick S/R relationship
- Estimate commercial selectivity-at-length (parametric form used which was informed by initial work with a non-parametric curve)
- Survey trawl selectivity-at-length logistic for small lengths
- Survey biomass is associated with 0+ biomass \*NEW\*
- Weight-at-length relationship, adjusted annually based on average survey weight \*NEW\*

## Key Model Structure/Assumptions

- Two sardine stocks: key assumptions
  - mixing : "west" stock recruits move to "south" stock (estimated annually no assumed relationship)
  - mixing : no "south" recruits move to "west" stock
  - mixing : no adult movement
  - 0+ biomass west/east of Cape Agulhas is from the "west" / "south" stock
  - recruitment west/east of Cape Infanta is from to the "west" / "south" stock
  - same  $M_{juv}$  and  $M_{adult}$  for both stocks

 allowance for difference in May survey bias east/west of Cape Infanta (proportion of recruits surveyed east of Cape Infanta ≤ that surveyed west of Cape Agulhas (winter spawning))

- allowance for difference in weights and growth by stock
- S/R curve parameters estimated separately for each stock

# Key Model Structure/Assumptions

- Two sardine stocks: key assumptions
  - mixing : "west" stock recruits move to "south" stock (estimated annually no assumed relationship)
  - mixing : no "south" recruits move to "west" stock
  - mixing : no adult movement a lower proportion of 2+ sardine move
  - 0+ biomass west/east of Cape Agulhas is from the "west" / "south" stock
  - recruitment west/east of Cape Infanta is from to the "west" / "south" stock
  - same  $M_{juv}$  and  $M_{adult}$  for both stocks
  - allowance for difference in May survey bias east/west of Cape Infanta (proportion of recruits surveyed east of Cape Infanta ≤ that surveyed west of Cape Agulhas (winter spawning))
  - allowance for difference in weights and growth by stock
  - S/R curve parameters estimated separately for each stock
  - age- and time-invariant annual infection of "west" stock sardine



## Outline

- Fishery and Data
- Stock Structure Hypotheses
- Sardine Two Stock Assessment Model Fits INITIAL RESULTS
- Considering the Parasite Data

## Four Alternative Initial Assumptions

| Model | Annual<br>Proportion of<br>West Stock<br>Infected | Age-1 fish move | Age 2-5+ fish<br>move |
|-------|---------------------------------------------------|-----------------|-----------------------|
| a)    | 20%                                               | Yes             | No                    |
| b)    | 40%                                               | Yes             | No                    |
| c)    | 20%                                               | Yes             | Yes                   |
| d)    | 40%                                               | Yes             | Yes                   |

#### Model Fits – Nov Biomass



#### Model Fits – May Recruitment

- Note difference in y-axis
- No south coast survey estimates for early part of time series



### Model Fits – Stock Recruitment

- Note difference in y-axis; but west stock maximum recruitment lower than previous model
- West stock  $\sigma_R$  larger than previous model



• Similar plots for alternative models

#### Model Fits – Estimated Movement

 Increase in "south" stock biomass primarily a result of movement from "west" stock rather than "south" stock productivity



• Proportion of 2+ sardine moving is ~25% of age-1 sardine

#### Model Fits – Estimated Movement

 Increase in "south" stock biomass primarily a result of movement from "west" stock rather than "south" stock productivity



Proportion of 2+ sardine moving is ~25% of age-1 sardine

## Model Fits – Survey Prop at Length

Average predicted is much closer to average observed than previous model



# Model Fits – Commercial Prop at Length





length (cm)

## Outline

- Fishery and Data
- Stock Structure Hypotheses
- Sardine Two Stock Assessment Model Fits
- Considering the Parasite Data

# Comparison of Model Predicted Parasite Prevalence With Observations



# **Comparison of Model Predicted** Parasite Prevalence With Observations





# Comparison of Model Predicted Parasite Prevalence With Observations





### Some Discussion Points

Comment on the ongoing development of the two mixing stock hypothesis, and the use of parasite data as a 'biological tag':

- The revised model structure
- Fitting the model to parasite prevalence data (and/or parasite intensity data)
- Assuming a time- and age-invariant infection rate
- Estimating annual age-1 movement proportions, with ages 2+ a time-invariant proportion of those estimates
- Modelling two south stock co-horts (1 Nov, 1 May) to account for winter spawning
- The chosen stock-recruitment relationship

An overview of the key issues to be discussed relating to the South African sardine two-mixing-stock hypothesis

#### Thank you for your attention