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Abstract

This note is a simple description of a state-space assessment model.

Motivation

Fish stock assessment models are fairly complex systems, so in order to motivate
the state-space approach consider the following example: Observations Y are
generated from λ0 = 0, λi = λi−1+ηi, Yi = λi+εi, where i = 1 . . .50, ηi ∼N(0,σ2

p),

and εi ∼ N(0,σ2
◦ ) all independent. The underlying unobserved quantities λ are

to be estimated.
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Figure 1: Simulation of a random walk with observation noise added

If we approached this system by a deterministic method (pretending zero ob-
servation noise) the logical estimator for the underlying λi is the corresponding
observed value Yi. This would naturally lead to a more fluctuating estimated time
series than the true underlying λ if the observation noise is in fact not zero. This
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would not use the information fully, as it does not take advantage of the correla-
tion between neighboring lambdas. Finally, this approach makes it impossible to
quantify uncertainties in the estimated values within the model.

If we approached this system by a fully parametric statistical model we would
have to add some model assumptions to make the model identifiable. One option
would be to assume that λ1 = λ2,λ3 = λ4, . . . ,λ49 = λ50. This pairwise coupling
is naturally arbitrary, and other assumptions could have been chosen, but it
illustrates trade-off we are facing. If we choose small λ -groups (here pairs) we
get highly uncertain estimates, as the ratio between number of parameters and
number of observations is high. If we use large λ -groups we get highly biased
estimates, because the lambdas we are assuming identical are in fact very different.

The third approach presented in this section is a state-space model. In a state-
space model the underlying process (here λ ) is considered a random variable
that is not observed. The only thing observed is a derived variable subject to
measurement noise. The model parameters (here σ2

p and σ2
◦ , and possibly an

over all mean level) are estimated in the marginal distribution of the observations
Y , and then the unobserved random variables λ are predicted via their conditional
distribution given Y .

Models based on unobserved random variables are widely used in other quanti-
tative sciences for instance agricultural studies, economics, and medical studies.
Part of the reason unobserved random variables are not widely used in fisheries
science is that fish stock assessment models are fairly complex. Using unob-
served random variables in this setting is computer intensive, and the software
tools and algorithms to make this feasible have been lagging. State-space mod-
els were introduced in fisheries by Gudmundsson (1987,1994) and Fryer (2001).
Both used the extended Kalman filter to compute the likelihood. The model pre-
sented here uses new software (the random effects module for AD Model Builder),
which uses a combination of automatic differentiation and the Laplace approxima-
tion (MacKay 2003) to solve high dimensional non-linear models with unobserved
random effects efficiently.

Model

The model is a state–space model. The states α are the log-transformed stock
sizes logN1, . . . , logNA and fishing mortalities logFi1, . . . , logFin corresponding to
different age classes and total international catches. In any given year y the state
is the combined vector αy = (logN1, . . . , logNA, logFi1, . . . , logFin)

′. The transition
equation describes the distribution of the next years state from a given state in
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the current year. The following is assumed:

αy = T (αy−1)+ηy

The transition function T is where the stock equation and assumptions about
stock–recruitment enters the model. The equations are:

logN1,y = log(R(w1,y−1 p1,y−1N1,y−1 + · · ·+wA,y−1 pA,y−1NA,y−1))

logNa,y = logNa−1,y−1−F(·)
a−1,y−1−Ma−1 , 2≤ a≤ A

logFa,y = logFa,y−1 , 1≤ a≤ A

Here Ma is the age specific natural mortality parameter, which is most often

assumed known from outside sources. F(·)
a−1,y−1 is the total fishing mortality, which

include both fishing mortality from fleets with and without effort information.
The function R describes the relationship between stock and recruitment. The
parameters of the chosen stock–recruitment function are estimated within the
model. Often it is assumed that certain Fa parameters are identical (e.g. FA−1 =
FA).

The prediction noise η is assumed to be uncorrelated Gaussian with zero mean,
and three separate variance parameters. One for recruitment σ2

R, one for survival
σ2

S , and one for the yearly development in fishing mortality σ2
F .

This completes the description of the unobserved state process. One unique
feature of this model is that the survival process is stochastic. Stock assessment
methods frequently assume deterministic survival process, which means that full
knowledge of Na, Ma, and Fa in the previous year imply full knowledge of Na+1 in
the current year. This assumption originates from historic purely deterministic
assessment methods where Fa was considered equivalent to a known catch that
was simply subtracted from Na.

In fully parametric statistical stock assessment models the assumption of deter-
ministic survival is combined with structural assumptions on the F parameters
(e.g. multiplicative), which is inconsistent, as an approximated F cannot give an
exactly known number of survivors. In this model Fa is considered a mortality
rate, and even full knowledge of Na, Ma, and Fa in the previous year only gives
a prediction of Na+1 in the current year, and the uncertainty of this prediction is
estimated within the model.

The observation part of the state–space model describes the distribution of the
observations for a given state αy. Here the vector of all observations from a given

year y is denoted xy. The elements of xy are residual log-landings logC(◦)
a,y (which

equals total landings if no other commercial fleets are present), log-catches from
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commercial fleets with effort data logC( f )
a,y , and log-indices from scientific surveys

log I(s)a,y. The combined observation equation is:

xy = O(αy)+ εy

The observation function O consists of the familiar catch equations for fleets
and surveys, and εy of independent measurement noise with separate variance
parameters for separate fleets and surveys. An expanded view of the observation
equation becomes:

logC(◦)
a,y = log

(
Fa,y

Za,y
(1− e−Za,y)Na,y

)
+ ε

(◦)
a,y

logC( f )
a,y = log

(
E( f )

y Q( f )
a

Za,y
(1− e−Za,y)Na,y

)
+ ε

( f )
a,y

log I(s)a,y = log
(

Q(s)
a e−Za,y

D(s)
365 Na,y

)
+ ε

(s)
a,y

Here Z is the total mortality rate Za,y =Ma+Fa,y+∑ f E( f )
y Q( f )

a , D(s) is the number

of days into the year where the survey s is conducted, Q( f )
a and Q(s)

a are model

parameters describing catchabilities. Finally ε
(◦)
a,y ∼ N(0,σ2

◦ ), ε
( f )
a,y ∼ N(0,σ2

f ), and

ε
(s)
a,y ∼ N(0,σ2

s ) are all assumed independent.

The likelihood function for this is set up by first defining the joint likelihood of
both random effects (here collected in the αy states), and the observations (here
collected in the xy vectors). The joint likelihood is:

L(θ ,α,x) =
Y

∏
y=2
{φ(αy−T (αy−1),Ση)}

Y

∏
y=1
{φ(xy−O(αy),Σε)}

Here θ is a vector of model parameters. Since the random effects α are not
observed inference should be obtain from the marginal likelihood:

LM(θ ,x) =
∫

L(θ ,α,x)dα

This integral is difficult to calculate directly, so the Laplace approximation is
used. The Laplace approximation is derived by first approximating the joint log
likelihood `(θ ,α,x) by a second order Taylor approximation around the optimum
α̂ w.r.t. α . The resulting approximated joint log likelihood can then be integrated
by recognizing it as a constant term and a term where the integral is know as the
normalizing constant from a multivariate Gaussian. The approximation becomes:∫

L(θ ,α,Y )dα ≈

√
(2π)n

det(−`′′αα(θ ,α,Y )|α=α̂θ
)

exp(`(θ , α̂θ ,Y ))
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Taking the logarithm gives the Laplace approximation of the marginal log likeli-
hood

`M(θ ,Y ) = `(θ , ûθ ,Y )−
1
2

log(det(−`′′uu(θ ,u,Y )|u=ûθ
))+

n
2

log(2π)
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